Spatial and Temporal Variations of Extreme Precipitation Events in Northeast China

2012 ◽  
Vol 573-574 ◽  
pp. 395-399
Author(s):  
Yong Wang ◽  
Yuan Yuan Ding ◽  
Qi Long Miao

Based on the daily precipitation data in Northeast China (NE China) from 1961 to 2010, six extreme precipitation indices (RX1day, Rx5day, R10mm, R20mm, R95T, and R99T) in NE China were calculated, and the temporal and spatial characteristics of extreme precipitation events were analyzed. The main results are summarized as follows: Except R99T, other extreme precipitation indicators all show the decreasing trend. All indicators are not significant. From the spatial distribution of extreme precipitation indicators, extreme precipitation indicators have different change situations in various regions, and the decreasing trends are dominant. This shows that the climate has become dry in NE China. It is important to forecast and reduce the climate induced flood risks and provide information for rational countermeasures.

2019 ◽  
Vol 20 (2) ◽  
pp. 275-296 ◽  
Author(s):  
Yang Yang ◽  
Thian Yew Gan ◽  
Xuezhi Tan

Abstract In the past few decades, there have been more extreme climate events occurring worldwide, including Canada, which has also suffered from many extreme precipitation events. In this paper, trend analysis, probability distribution functions, principal component analysis, and wavelet analysis were used to investigate the spatial and temporal patterns of extreme precipitation events of Canada. Ten extreme precipitation indices were calculated using long-term daily precipitation data (1950–2012) from 164 Canadian gauging stations. Several large-scale climate patterns such as El Niño–Southern Oscillation (ENSO), Pacific decadal oscillation (PDO), Pacific–North American (PNA), and North Atlantic Oscillation (NAO) were selected to analyze the relationships between extreme precipitation and climate indices. Convective available potential energy (CAPE), specific humidity, and surface temperature were employed to investigate potential causes of trends in extreme precipitation. The results reveal statistically significant positive trends for most extreme precipitation indices, which means that extreme precipitation of Canada has generally become more severe since the mid-twentieth century. The majority of indices display more increasing trends along the southern border of Canada while decreasing trends dominated the central Canadian Prairies. In addition, strong teleconnections are found between extreme precipitation and climate indices, but the effects of climate patterns differ from region to region. Furthermore, complex interactions of climate patterns with synoptic atmospheric circulations can also affect precipitation variability, and changes to the summer and winter extreme precipitation could be explained more by the thermodynamic impact and the combined thermodynamic and dynamic effects, respectively. The seasonal CAPE, specific humidity, and temperature are correlated to Canadian extreme precipitation, but the correlations are season dependent, which could be positive or negative.


2021 ◽  
Author(s):  
Shakti Suryavanshi ◽  
Nitin Joshi ◽  
Hardeep Kumar Maurya ◽  
Divya Gupta ◽  
Keshav Kumar Sharma

Abstract This study examines the pattern and trend of seasonal and annual precipitation along with extreme precipitation events in a data scare, south Asian country, Afghanistan. Seven extreme precipitation indices were considered based upon intensity, duration and frequency of precipitation events. The study revealed that precipitation pattern of Afghanistan is unevenly distributed at seasonal and yearly scales. Southern and Southwestern provinces remain significantly dry whereas, the Northern and Northeastern provinces receive comparatively higher precipitation. Spring and winter seasons bring about 80% of yearly precipitation in Afghanistan. However, a notable declining precipitation trend was observed in these two seasons. An increasing trend in precipitation was observed for the summer and autumn seasons, however; these seasons are the lean periods for precipitation. A declining annual precipitation trend was also revealed in many provinces of Afghanistan. Analysis of extreme precipitation indices reveals a general drier condition in Afghanistan. Large spatial variability was found in precipitation indices. In many provinces of Afghanistan, a significantly declining trends were observed in intensity-based (Rx1-day, RX5-day, SDII and R95p) and frequency-based (R10) precipitation indices. The duration-based precipitation indices (CDD and CWD) also infer a general drier climatic condition in Afghanistan. This study will assist the agriculture and allied sectors to take well-planned adaptive measures in dealing with the changing patterns of precipitation, and additionally, facilitating future studies for Afghanistan.


2017 ◽  
Vol 8 (3) ◽  
pp. 535-556 ◽  
Author(s):  
X. J. Yang ◽  
Z. X. Xu ◽  
W. F. Liu ◽  
Lin Liu

Few studies of extreme precipitation have been conducted in Northeast China, particularly at multi-timescales. We aim to enhance the understanding of changes and variability in extreme precipitation over the past 54 years (1961–2014) in this region. We have investigated the potential relationship among extreme precipitation, climate and agricultural drought focusing on several timescales in this region. Thirteen extreme precipitation indices at seasonal, annual, and growing-period scales were estimated on the basis of daily precipitation data from 70 meteorological stations. The results indicate that all extreme precipitation indices that reflect the features of extreme wet events showed increasing trends in spring, and the trends of these indices were almost negative for the other timescales. Spatially, the frequency, duration and intensity of extreme wet events decreased gradually from south to north. The range of influence and the duration of extreme dry events increased continuously in Northeast China. In Northeast China, extreme precipitation was more easily influenced by the polar climate than the monsoon. Furthermore, correlation between the extreme precipitation indices and comprehensive crop failure ratios of agricultural drought disasters (C index) confirmed that agricultural drought was heavily influenced by precipitation anomalies in this area.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Dan Zhang ◽  
Wensheng Wang ◽  
Shuqi Liang ◽  
Shunjiu Wang

Climate extremes have attracted widespread attention for their threats to the natural environment and human society. Based on gauged daily precipitation from 1963 to 2016 in four subregions of the Jinsha River Basin (JRB), four extreme precipitation indices developed by the Expert Team on Climate Change Detection and Indices (ETCCDI) were employed to assess the spatiotemporal variations of extreme precipitation events. Results show the following: (1) Max one-day precipitation amount (RX1day), max consecutive five-day precipitation amount (RX5day), precipitation on very wet days (R95p), and number of heavy precipitation days (R10mm) showed increasing trends in four subregions except for the decline of R10mm in the southeastern and RX5day in the midsouthern. Extreme precipitation has become more intense and frequent in most parts of the JRB. (2) In space, the four extreme precipitation indices increased from the northwest to the southeast. Temporal trends of extreme precipitation showed great spatial variability. It is notable that extreme precipitation increased apparently in higher elevation areas. (3) The abrupt change of extreme precipitation in the northwestern, midsouthern, and southeastern mainly appeared in the late 1990s and the 2000s. For the midnorthern, abrupt change mainly occurred in the late 1980s. This study is meaningful for regional climate change acquaintance and disaster prevention in the JRB.


2021 ◽  
Vol 13 (15) ◽  
pp. 3010
Author(s):  
Qingshan He ◽  
Jianping Yang ◽  
Hongju Chen ◽  
Jun Liu ◽  
Qin Ji ◽  
...  

Accurate estimates of extreme precipitation events play an important role in climate change studies and natural disaster risk assessments. This study aimed to evaluate the capability of the China Meteorological Forcing Dataset (CMFD), Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE), and Climate Hazards Group Infrared Precipitation with Station data (CHIRPS) to detect the spatiotemporal patterns of extreme precipitation events over the Qinghai-Tibet Plateau (QTP) in China, from 1981 to 2014. Compared to the gauge-based precipitation dataset obtained from 101 stations across the region, 12 indices of extreme precipitation were employed and classified into three categories: fixed threshold, station-related threshold, and non-threshold indices. Correlation coefficient (CC), root mean square error (RMSE), mean absolute error (MAE), and Kling–Gupta efficiency (KGE), were used to assess the accuracy of extreme precipitation estimation; indices including probability of detection (POD), false alarm ratio (FAR), and critical success index (CSI) were adopted to evaluate the ability of gridded products’ to detect rain occurrences. The results indicated that all three gridded datasets showed acceptable representation of the extreme precipitation events over the QTP. CMFD and APHRODITE tended to slightly underestimate extreme precipitation indices (except for consecutive wet days), whereas CHIRPS overestimated most indices. Overall, CMFD outperformed the other datasets for capturing the spatiotemporal pattern of most extreme precipitation indices over the QTP. Although CHIRPS had lower levels of accuracy, the generated data had a higher spatial resolution, and with correction, it may be considered for small-scale studies in future research.


2018 ◽  
Vol 31 (22) ◽  
pp. 9087-9105 ◽  
Author(s):  
Lejiang Yu ◽  
Qinghua Yang ◽  
Timo Vihma ◽  
Svetlana Jagovkina ◽  
Jiping Liu ◽  
...  

Observed daily precipitation data were used to investigate the characteristics of precipitation at Antarctic Progress Station and synoptic patterns associated with extreme precipitation events during the period 2003–16. The annual precipitation, annual number of extreme precipitation events, and amount of precipitation during the extreme events have positive trends. The distribution of precipitation at Progress Station is heavily skewed with a long tail of extreme dry days and a high peak of extreme wet days. The synoptic pattern associated with extreme precipitation events is a dipole structure of negative and positive height anomalies to the west and east of Progress Station, respectively, resulting in water vapor advection to the station. For the first time, we apply self-organizing maps (SOMs) to examine thermodynamic and dynamic perspectives of trends in the frequency of occurrence of Antarctic extreme precipitation events. The changes in thermodynamic (noncirculation) processes explain 80% of the trend, followed by the changes in the interaction between thermodynamic and dynamic processes, which account for nearly 25% of the trend. The changes in dynamic processes make a negative (less than 5%) contribution to the trend. The positive trend in total column water vapor over the Southern Ocean explains the change of thermodynamic term.


2020 ◽  
Vol 51 (3) ◽  
pp. 484-504 ◽  
Author(s):  
Linchao Li ◽  
Yufeng Zou ◽  
Yi Li ◽  
Haixia Lin ◽  
De Li Liu ◽  
...  

Abstract Extreme precipitation events vary with different sub-regions, sites and years and show complex characteristics. In this study, the temporal variations, trends with significance and change points in the annual time series of 10 extreme precipitation indices (EPIs) at 552 sites and in seven sub-regions were analyzed using the modified Mann–Kendall test and sequential Mann–Kendall analysis. Three representative (extremely wet, normal and extremely dry) years from 1961 to 2017 were selected by the largest, 50%, and smallest empirical frequency values in China. The spatiotemporal changes in the EPIs during the three representative years were analyzed in detail. The results showed that during 1961–2017, both the consecutive wet or dry days decreased significantly, while the number of heavy precipitation days had no significant trend, and the other seven wet EPIs increased insignificantly. The abrupt change years of the 10 EPIs occurred 32 and 40 times from 1963 to 1978 and from 1990 to 2016, respectively, regardless of sub-region. The extremely dry (or wet) events mainly occurred in western (or southwestern) China, implying a higher extreme event risk. The extremely wet, normal and extremely dry events from 1961 to 2017 occurred in 2016, 1997 and 2011 with empirical frequencies of 1.7%, 50% and 98.3%, respectively. In addition, 1998 was the second-most extremely wet year (empirical frequency was 3.7%). The monthly precipitation values were larger from February to August in 1998, forming a much earlier flood peak than that of 2016. The 10 EPIs had close connections with Normalized Difference Vegetation Indexes during the 12 months of 1998 and 2016. This study provides useful references for disaster prevention in China.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1981 ◽  
Author(s):  
Kang Liang

Precipitation extremes have important implications for regional water resources and ecological environment in endorheic (landlocked) basins. The Hongjian Lake Basin (HJLB), as the representative inflow area in the Ordos Plateau in China, is suffering from water scarcity and an ecosystem crisis; however, previous studies have paid little attention to changes in precipitation extremes in the HJLB. In this study, we investigated the spatio-temporal variations of the core extreme precipitation indices (i.e., PRCTOT, R99p, Rx1day, Rx5day, SDII, R1, R10, CWD, and CDD) recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI), and analyzed the climatic dry–wet regime indicated by these extreme indices during 1960–2014 in the HJLB. The results show that the nine extreme indices had large differences in temporal and spatial variation characteristics. All the nine extreme precipitation indices showed a large fluctuation, both in the whole period and in the three detected different sub-periods, with variation magnitudes of 13%–52%. Most extreme indices had non-significant downward trends, while only the consecutive wet days (CWD) had a significant upward trend. The eight extreme wet indices increased from northwest to southeast, while the consecutive dry days (CDD) had the opposite change direction. Each index had a different trend with different spatial distribution locations and areas. The nine extreme indices revealed that the climate in the HJLB has become a drought since the early 1980s. This was specifically indicated by all four extreme precipitation quantity indices (PRCTOT, R99p, Rx1day, Rx5day) and the extreme intensity index (SDII) declining, as well as the number of heavy precipitation days (R10) decreasing. When the dry–wet variations was divided into the different sub-periods, the climatic dry–wet changes of each index demonstrated more inconsistency and complexity, but most indices in the first sub-period from 1960 to the late 1970s could be regarded as a wet high-oscillation phase, the second sub-period after the early 1980s was a relatively dry low-oscillation phase, and the third sub-period after the late 1990s or early 21st century was a dry medium-oscillation phase. It is worth noting that most extreme indices had an obvious positive linear trend in the third sub-period, which means that in the last 20 years, the precipitation extremes showed an increasing trend. This study could provide a certain scientific reference for regional climate change detection, water resources management, and disaster prevention in the HJLB and similar endorheic basins or inland arid regions.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 193 ◽  
Author(s):  
Chaoxing Sun ◽  
Guohe Huang ◽  
Yurui Fan

The unique characteristics of topography, landforms, and climate in the Loess Plateau make it especially important to investigate its extreme precipitation characteristics. Daily precipitation data of Loess Plateau covering a period of 1959–2017 are applied to evaluate the probability features of five precipitation indicators: the amount of extreme heavy precipitation (P95), the days with extreme heavy precipitation, the intensity of extreme heavy precipitation (I95), the continuous dry days, and the annual total precipitation. In addition, the joint risk of different combinations of precipitation indices is quantitatively evaluated based on the copula method. Moreover, the risk and severity of each extreme heavy precipitation factor corresponding to 50-year joint return period are achieved through inverse derivation process. Results show that the precipitation amount and intensity of the Loess Plateau vary greatly in spatial distribution. The annual precipitation in the northwest region may be too concentrated in several rainstorms, which makes the region in a serious drought state for most of the year. At the level of 10-year return period, more than five months with no precipitation events would occur in the Northwest Loess Plateau. While, P95 or I95 events of 100-year level may be encountered in a 50-year return period and in the southeastern region, which means there are foreseeable long-term extreme heavy precipitation events.


Sign in / Sign up

Export Citation Format

Share Document