A New Method for Measuring the Residual Stresses in Multi-Layered Thin Film Systems

2012 ◽  
Vol 591-593 ◽  
pp. 884-890
Author(s):  
Mei Liu ◽  
Hai Hui Ruan ◽  
Liang Chi Zhang

To meet different electrical or optical functionalities, thin films are often of multiple layers processed at high temperatures. Substantial residual stresses can therefore develop in such thin film systems due to the disparate thermal properties of the individual material layers. High stresses can lead to mechanical failure of the systems and thus understanding the residual stresses in thin film systems is important. This paper presents a systematic way to characterize the residual stresses in epitaxial, polycrystalline and amorphous layers by using X-ray diffraction (XRD) techniques. The single-point XRD pattern renders the stresses of crystalline layers and the scanning XRD gives the curvature of the whole film. Based on the newly-developed analytical model, the residual stresses of each layer can all be determined.

1990 ◽  
Vol 187 ◽  
Author(s):  
S. Raud ◽  
Quat T. Vu ◽  
M-A. Nicolet ◽  
G. A. Pollock ◽  
K. W. Mitchell ◽  
...  

AbstractWe study the properties of CuInSe2 thin films grown on glass and on Mo substrates. The investigation is carried out with X-ray diffraction, RBS, XTEM and SEM.CuInSe2/Mo contact stability is investigated after annealing at 600°C. RBS reveals that this treatment induces an interdiffusion between the metal and the chalcopyrite. To clarify this reaction, we have investigated the individual thin-film couples upon annealing. RBS and X-ray diffraction reveal insignificant interaction between Mo/Cu and Mo/In, but Se reacts with Mo.


2003 ◽  
Vol 36 (3) ◽  
pp. 869-879 ◽  
Author(s):  
F. Badawi ◽  
P. Villain

Residual stresses influence most physical properties of thin films and are closely related to their microstructure. Among the most widely used methods, X-ray diffraction is the only one allowing the determination of both the mechanical and microstructural state of each diffracting phase. Diffracting planes are used as a strain gauge to measure elastic strains in one or several directions of the diffraction vector. Important information on the thin-film microstructure may also be extracted from the width of the diffraction peaks: in particular, the deconvolution of these peaks allows values of coherently diffracting domain size and microdistortions to be obtained. The genesis of residual stresses in thin films results from multiple mechanisms. Stresses may be divided into three major types: epitaxic stresses, thermal stresses and intrinsic stresses. Diffraction methods require the knowledge of the thin-film elastic constants, which may differ from the bulk-material values as a result of the particular microstructure. Combining an X-ray diffractometer with a tensile tester, it is possible to determine X-ray elastic constants of each diffracting phase in a thin-film/substrate system, in particular the Poisson ratio and the Young modulus. It is important to notice that numerous difficulties relative to the application of diffraction methods may arise in the case of thin films.


Molekul ◽  
2008 ◽  
Vol 3 (1) ◽  
pp. 48
Author(s):  
Bilalodin Bilalodin

The growth of PbTiO3 ferroelectric thin films have successfully done. Thin films were made from bulk (powder) PbTiO3 dissolved in methanol solution. The condensation was mixed during 1 hour to get homogeneous condensation. Thin films were grown above corning substrates by spin coating method. Optimation was done by various of annealing temperature. The physical properties of thin films were characterized by Energi Dispersive X-Ray Spectroscopy (EDS), X-Ray Diffraction (XRD), Scanning and Electron Microscopy (SEM). EDS measurement showed that the stoichiometry composition ratio of Pb/Ti is 1/1.26 at annealing temperature 600oC and 1/1.29 at annealing temperature 700oC. The result of XRD pattern showed that crystal structure of PbTiO3 thin films are tetragonal. The calculated lattice parameters ontained from Chohen Method are a=b= 3.873 Å dan c= 4.130Å. The result of SEM PbTiO3 thin film showed that thin film has globular grain size.


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


MRS Advances ◽  
2016 ◽  
Vol 1 (39) ◽  
pp. 2711-2716 ◽  
Author(s):  
V. Vasilyev ◽  
J. Cetnar ◽  
B. Claflin ◽  
G. Grzybowski ◽  
K. Leedy ◽  
...  

ABSTRACTAlN thin film structures have many useful and practical piezoelectric and pyroelectric properties. The potential enhancement of the AlN piezo- and pyroelectric constants allows it to compete with more commonly used materials. For example, combination of AlN with ScN leads to new structural, electronic, and mechanical characteristics, which have been reported to substantially enhance the piezoelectric coefficients in solid-solution AlN-ScN compounds, compared to a pure AlN-phase material.In our work, we demonstrate that an analogous alloying approach results in considerable enhancement of the pyroelectric properties of AlN - ScN composites. Thin films of ScN, AlN and Al1-x ScxN (x = 0 – 1.0) were deposited on silicon (004) substrates using dual reactive sputtering in Ar/N2 atmosphere from Sc and Al targets. The deposited films were studied and compared using x-ray diffraction, XPS, SEM, and pyroelectric characterization. An up to 25% enhancement was observed in the pyroelectric coefficient (Pc = 0.9 µC /m2K) for Sc1-xAlxN thin films structures in comparison to pure AlN thin films (Pc = 0.71 µC/m2K). The obtained results suggest that Al1-x ScxN films could be a promising novel pyroelectric material and might be suitable for use in uncooled IR detectors.


1988 ◽  
Vol 66 (5) ◽  
pp. 373-375 ◽  
Author(s):  
C. J. Arsenault ◽  
D. E. Brodie

Zn-rich and P-rich amorphous Zn3P2 thin films were prepared by co-evaporation of the excess element during the normal Zn3P2 deposition. X-ray diffraction techniques were used to investigate the structural properties and the crystallization process. Agglomeration of the excess element within the as-made amorphous Zn3P2 thin film accounted for the structural properties observed after annealing the sample. Electrical measurements showed that excess Zn reduces the conductivity activation energy and increases the conductivity, while excess P up to 15 at.% does not alter the electrical properties significantly.


2013 ◽  
Vol 710 ◽  
pp. 170-173
Author(s):  
Lian Ping Chen ◽  
Yuan Hong Gao

It is hardly possible to obtain rare earth doped CaWO4thin films directly through electrochemical techniques. A two-step method has been proposed to synthesize CaWO4:(Eu3+,Tb3+) thin films at room temperature. X-ray diffraction, energy dispersive X-ray analysis, spectrophotometer were used to characterize their phase, composition and luminescent properties. Results reveal that (Eu3+,Tb3+)-doped CaWO4films have a tetragonal phase. When the ratio of n (Eu)/n (Tb) in the solution is up to 3:1, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Tb element; on the contrary, when the ratio in the solution is lower than 1:4, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Eu element. Under the excitation of 242 nm, sharp emission peaks at 612, 543, 489 and 589 nm have been observed for CaWO4:(Eu3+,Tb3+) thin films.


2010 ◽  
Vol 93-94 ◽  
pp. 231-234
Author(s):  
B. Hongthong ◽  
Satreerat K. Hodak ◽  
Sukkaneste Tungasmita

Strontium substituted hydroxyapatite(SrHAp) were fabricated both in the form of powder as reference and thin film by using inorganic precursor reaction. The sol-gel process has been used for the deposition of SrHAp layer on stainless steal 316L substrate by spin coating technique, after that the films were annealed in air at various temperatures. The chemical composition of SrHAp is represented (SrxCa1-x)5(PO4)3OH, where x is equal to 0, 0.5 and 1.0. Investigations of the phase structure of SrHAp were carried out by using X-ray diffraction technique (XRD). The results showed that strontium is incorporated into hydroxyapatite where its substitution for calcium increases in the lattice parameters, and Sr3(PO4)2 can be detected at 900°C. The SEM micrographs showed that SrHAp films exhibited porous structure before develop to a cross-linking structure.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Gyu-bong Cho ◽  
Tae-hoon Kwon ◽  
Tae-hyun Nam ◽  
Sun-chul Huh ◽  
Byeong-keun Choi ◽  
...  

LiNiO2thin films were fabricated by RF magnetron sputtering. The microstructure of the films was determined by X-ray diffraction and field-emission scanning electron microscopy. The electrochemical properties were investigated with a battery cycler using coin-type half-cells. The LiNiO2thin films annealed below 500°C had the surface carbonate. The results suggest that surface carbonate interrupted the Li intercalation and deintercalation during charge/discharge. Although the annealing process enhanced the crystallization of LiNiO2, the capacity did not increase. When the annealing temperature was increased to 600°C, the FeCrNiO4oxide phase was generated and the discharge capacity decreased due to an oxygen deficiency in the LiNiO2thin film. The ZrO2-coated LiNiO2thin film provided an improved discharge capacity compared to bare LiNiO2thin film suggesting that the improved electrochemical characteristic may be attributed to the inhibition of surface carbonate by ZrO2coating layer.


2005 ◽  
Vol 879 ◽  
Author(s):  
M. Abid ◽  
C. Terrier ◽  
J-P Ansermet ◽  
K. Hjort

AbstractFollowing the theory, ferromagnetism is predicted in Mn- doped ZnO, Indeed, ferromagnetism above room temperature was recently reported in thin films as well as in bulk samples made of this material. Here, we have prepared Mn doped ZnO by electrodeposition. The samples have been characterized by X-ray diffraction and spectroscopic methods to ensure that the dopants are substitutional. Some samples exhibit weak ferromagnetic properties at room temperature, however to be useful for spintronics this material need additional carriers provided by others means.


Sign in / Sign up

Export Citation Format

Share Document