Microstructure Evolution of Sn-3.5Ag-1.0Cu-0.5Ni/Cu System Lead Free Solder under Long Term Thermal Aging

2012 ◽  
Vol 620 ◽  
pp. 263-267 ◽  
Author(s):  
Noor Asikin Ab Ghani ◽  
Iziana Yahya ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Shamsuddin Saidatulakmar ◽  
Zainal Arifin Ahmad ◽  
...  

Due to environmental concerns, lead-free solders were introduced in replacing the lead-based solders in microelectronics devices technology. Although there are many lead-free solder available, the Sn-Ag-Cu solder was considered the best choice. But the solder has its draw backs in terms of melting temperature and intermetallic formations. In this study, the effect of 0.5wt% Ni addition on the microstructure of the Sn-3.5Ag-1.0Cu solder was investigated. The solder was synthesized via powder metallurgy route which includes blending, compacting and sintering. The solders were characterized for its densities and melting temperatures. SEM was used to observe the microstructure of intermetallic phases. The solders were melted on copper substrate at 250°C for one minute and aged at 150°C from 0 to 400 hours. The phases formed were studied under SEM. The SEM results showed the presence of Cu6Sn5, Cu3Sn, Ag3Sn and (Cu,Ni)6Sn5 intermetallics.

2016 ◽  
Vol 857 ◽  
pp. 3-7 ◽  
Author(s):  
Ramani Mayappan ◽  
Nur Nadiah Zainal Abidin ◽  
Noor Asikin Ab Ghani ◽  
Iziana Yahya ◽  
Norlin Shuhaime

Due to environmental concerns, lead-free solders were introduced to replace the lead-based solders in microelectronics devices technology. Although there are many lead-free solders available, the Sn-Ag-Cu solders are considered the best replacement due to their good wettability and joint strength. Although the Sn-Ag-Cu solders are accepted widely, but there are still some room for improvement. In this study, 1wt% Zn, which can be considered high percentage for a dopant, was added into the solder via powder metallurgy route. The effects of adding this dopant into the Sn-3.5Ag-1.0Cu solder on the interface intermetallic and thickness were investigated. The intermetallics phases formed were observed under Scanning Electron Microscope (SEM) and their thicknesses were measured. The SEM results showed the presence of Cu6Sn5, Cu3Sn and (Cu,Zn)6Sn5 intermetallics. It can be concluded that Zn behaved as retarding agent and significantly retarded the growth of Cu-Sn intermetallics.


2012 ◽  
Vol 620 ◽  
pp. 142-146 ◽  
Author(s):  
Iziana Yahya ◽  
Noor Asikin Ab Ghani ◽  
Nur Nadiah Zainal Abiddin ◽  
Hamidi Abd Hamid ◽  
Ramani Mayappan

Due to environmental concerns, lead-free solders were introduced in replacing the lead-based solders in microelectronics devices technology. Although there are many lead-free solder available, the Sn-Ag-Cu is considered the best choice. But the solder has its draw backs in terms of melting temperature and intermetallic formations. To improve the solder, a fourth element Zn was added into the solder. The new composite solders were synthesized via powder metallurgy route. This research studies the effect of 0.1wt% Zn addition on the hardness and intermetallic formation on Cu substrate. For the hardness results, the micro Vickers values were reported. For intermetallic, the solders were melted at 250°C and aged at 150°C until 400 hours. The microhardness value for Zn based composites solder shows higher micro Vickers hardness compared to un-doped counterparts. The phases formed and its growth was studied under SEM and by energy dispensive x-ray (EDX). The SEM results show the presence of Cu6Sn5and Cu3Sn intermetallics and the Cu5Zn8intermetallic was not detected. The addition of 0.1wt% Zn has retarded the growth of the Cu3Sn intermetallic but not the total intermetallic thickness.


2015 ◽  
Vol 1087 ◽  
pp. 162-166
Author(s):  
Nor Aishah Jasli ◽  
Hamidi Abd Hamid ◽  
Ramani Mayappan

This study investigated the effect of Ni addition on intermetallic formation in the Sn-8Zn-3Bi solder under liquid state aging. The intermetallic compounds were formed by reacting the solder alloy with copper substrate. Different reflow time was used at temperature 220°C. Morphology of the phases formed was observed using scanning electron microscope (SEM) and in order to determine elemental compositions of the phases, energy dispersive x-ray (EDX) was used. The formation of the reaction layer led by Cu5Zn8 intermetallic and then followed by Cu6Sn5 and Cu3Sn when reflow time increases. Keywords: lead free solder, intermetallic, Cu5Zn8, Cu6Sn5, liquid state aging.


2015 ◽  
Vol 1113 ◽  
pp. 554-559
Author(s):  
Sakinah Mohd Yusof ◽  
Md Amin Hashim ◽  
Junaidah Jai ◽  
Abdul Hadi

With world-wide strict legislation for reduction or removal of lead from industrial waste, development of a large number of lead-free alternative solder materials had been intensively examined. The drive for lead-free solders development was towards systems that can imitate conventional lead containing solder alloys in terms of melting temperatures and improvement of mechanical properties. Nanostructured solder alloy, with a grain size of typically < 100 nm, was a new class of materials with properties distinct from and frequently distinguished to those of the conventional alloy. In comparison, nanostructured solder alloys exhibit higher strength and hardness, enhanced diffusivity, and excellent soft and hard magnetic properties. Numerous different techniques were performed to synthesize these nanostructured solder alloys. Electrodeposition method has generated huge interest in nanostructured solder preparation, mainly due to its ability to deposit solders selectively and uniformly at nanoscale. These factors bring significant influences on the behaviors of products, such as magnetization, density, ductility, wear resistance, corrosion resistance, porosity, molecular structure, and crystal properties which plays a vital part in the field of electronic manufacturing. In this paper, a short review on the electrodeposition, a useful technique to deposit different metals and alloys, as a method for nanostructured lead-free solder alloys preparation is presented.


2012 ◽  
Vol 501 ◽  
pp. 150-154 ◽  
Author(s):  
Ramani Mayappan

The development of lead-free solders has been an essential task in the electronics industry because of the restriction of lead use by legislation. Among the candidates, Sn-Ag-Cu group of solder alloys have great advantages to replace the conventional Sn-Pb solder. In this study, the wetting and intermetallic study between Sn-3.5Ag-1.0Cu-xZn lead-free solder reacting on copper substrate were investigated under different soldering conditions. The addition of 0.7wt% of Zn improved the wettability on Cu substrate since it has the highest spreading area at 310°C. The Cu6Sn5 and Cu3Sn phases are the main interface intermetallic formed and these intermetallics increased in thickness with time and temperature. At 270°C, the addition of 0.7wt% Zn retarded the growth of Cu3Sn intermetallic until 10 min of the soldering time. Generally the addition of Zn was beneficial in retarding the total intermetallic thickness.


2015 ◽  
Vol 10 (1) ◽  
pp. 2641-2648
Author(s):  
Rizk Mostafa Shalaby ◽  
Mohamed Munther ◽  
Abu-Bakr Al-Bidawi ◽  
Mustafa Kamal

The greatest advantage of Sn-Zn eutectic is its low melting point (198 oC) which is close to the melting point. of Sn-Pb eutectic solder (183 oC), as well as its low price per mass unit compared with Sn-Ag and Sn-Ag-Cu solders. In this paper, the effect of 0.0, 1.0, 2.0, 3.0, 4.0, and 5.0 wt. % Al as ternary additions on melting temperature, microstructure, microhardness and mechanical properties of the Sn-9Zn lead-free solders were investigated. It is shown that the alloying additions of Al at 4 wt. % to the Sn-Zn binary system lead to lower of the melting point to 195.72 ˚C.  From x-ray diffraction analysis, an aluminium phase, designated α-Al is detected for 4 and 5 wt. % Al compositions. The formation of an aluminium phase causes a pronounced increase in the electrical resistivity and microhardness. The ternary Sn-9Zn-2 wt.%Al exhibits micro hardness superior to Sn-9Zn binary alloy. The better Vickers hardness and melting points of the ternary alloy is attributed to solid solution effect, grain size refinement and precipitation of Al and Zn in the Sn matrix.  The Sn-9%Zn-4%Al alloy is a lead-free solder designed for possible drop-in replacement of Pb-Sn solders.  


2005 ◽  
Vol 41 (Extra) ◽  
pp. 208-212
Author(s):  
D. Soares ◽  
C. Vilarinho ◽  
J. Barbosa ◽  
R. Silva ◽  
F. Castro

2015 ◽  
Vol 830-831 ◽  
pp. 265-269
Author(s):  
Satyanarayan ◽  
K.N. Prabhu

In the present work, the bond strength of Sn-0.7Cu, Sn-0.3Ag-0.7Cu, Sn-2.5Ag-0.5Cu and Sn-3Ag-0.5Cu lead free solders solidified on Cu substrates was experimentally determined. The bond shear test was used to assess the integrity of Sn–Cu and Sn–Ag–Cu lead-free solder alloy drops solidified on smooth and rough Cu substrate surfaces. The increase in the surface roughness of Cu substrates improved the wettability of solders. The wettability was not affected by the Ag content of solders. Solder bonds on smooth surfaces yielded higher shear strength compared to rough surfaces. Fractured surfaces revealed the occurrence of ductile mode of failure on smooth Cu surfaces and a transition ridge on rough Cu surfaces. Though rough Cu substrate improved the wettability of solder alloys, solder bonds were sheared at a lower force leading to decreased shear energy density compared to the smooth Cu surface. A smooth surface finish and the presence of minor amounts of Ag in the alloy improved the integrity of the solder joint. Smoother surface is preferable as it favors failure in the solder matrix.


Sign in / Sign up

Export Citation Format

Share Document