Preparation and Characterization of Cyclophosphamide-Loaded Chitosan Microspheres

2012 ◽  
Vol 621 ◽  
pp. 130-133
Author(s):  
Yi Lin Ding ◽  
Su Su Ding ◽  
Guo Fang Ding

Chitosan microspheres were prepared by using a cross linking agent combined with an emulsion technique. Cyclophosphamide was loaded as an anticancer agent. Obtained microspheres were spherical and regular, with a smooth surface morphology, having an average diameter of 15.7±9.0μm. After preparation, the drug-loading rate and entrapment rate of cyclophosphamide was investigated by UV spectrophotometry. Drug release was tested in vitro in a dynamic dialysis system with a dialysis bag. The chitosan microspheres prepared were proved to have good drug release profiles.

Author(s):  
Gayathri Hariharan ◽  
Priyanka Sinha

Objective: To optimize and evaluate the formulation of metronidazole (MT)-loaded chitosan microspheres and to investigate the efficiency of biodegradable polymer in developing sustained release formulation of MT to prolong the action of drug.Methods: MT microspheres were prepared using emulsion cross-linking method. Polymer-drug compatibility study was done using Fourier transform infrared. Physical characteristics were evaluated by particle size,SEM, flow properties etc. In vitro studies for evaluating drug release for MT-loaded chitosan microspheres were done by dissolution study.Results: Particle size of the formulated microspheres was found to be within the range of 110-130 μm. Flow properties of F1-F7 such as angle of repose, bulk density, and tapped density were found to be within limits. Drug entrapment efficiency was found to be better for all the formulations within the range of 74.82-84.32% w/w. Drug loading capacity was found to be in the range of 56-83.2% w/v. In vitro drug release was found to be in the range of 81.32-96.23% w/v.Conclusion: In spite of all the above results, we conclude that F5 formulation was optimized depending on the data obtained from the drug loading capacity and percentage drug release studies. F5 formulation is formulated with drug-polymer ratio 1:2 with 1% of di octyl sodium sulfo succinate and 8 ml of glutaraldehyde as a cross-linking agent.


Drug Research ◽  
2018 ◽  
Vol 68 (12) ◽  
pp. 673-679 ◽  
Author(s):  
Wanqing Li ◽  
Hongyuan Ba ◽  
Peng Huang ◽  
Aiping Zheng ◽  
Xi Yang

Abstract Objective To study the preparation technique of 5-fluorouracil and the release characteristic of 5-fluorouracil-loaded chitosan microspheres for the intranasal administration. Methods 5-fluorouracil-loaded chitosan microspheres were prepared by emulsion chemical cross-link technique. The orthogonal experimental design was used to optimize the preparation procedure. Dynamic dialysis method was applied to determine the release characteristic of microspheres in vitro and its influencing factors. Swelling behavior was expressed by swelling ratio. The degree of mucoadhesion was investigated by determining the mucociliary transport rate(MTR) of the microparticle across a frog palate. Results Microspheres with a good shape and narrow size distribution were prepared. The average diameter was 43±4 μm. The drug loading was (38.5±1.0) %. The entrapment efficiency was (79.0±1.8) %. The drug release profile in vitro could be described by Higuichi eqution as Q=0.1035t1/2+0.0284 (r=0.9965). Chitosan had good mucoadhesive property and caused a significant reduction in MTR(P<0.01). Conclusion The optimized technique has a good reproducibility and a high entrapment efficiency, so it could be used to prepare 5-fluorouracil-loaded chitosan microspheres for the intranasal administration.Chitosan is a good material for nasal preparation and has prospective development in the pharmaceutical field.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 281
Author(s):  
Soo-Yong Park ◽  
Jiin Kang ◽  
Ji-Young Yoon ◽  
Ildoo Chung

Biodegradable polyfumarateurethane (PFU) for use as a bupivacaine delivery vehicle, synthesized using di-(2-hydroxypropyl fumarate) (DHPF), polyethylene glycol (PEG) and 1,6-hexamethylene diisocyanate (HMDI), was designed to be degradable through the hydrolysis and enzymatic degradation of the ester bonds in its polymer backbone. Using a water-in-oil-in-water double emulsion techniques, nanoparticles encapsulating water or fluorescein isothiocyanate (FITC) were fabricated to avoid the immune system owing to the presence of PEG on their surface. The morphologies of these nanoparticles were characterized by DLS, TEM, FE-SEM, and fluorescent microscopies. The present study explored the encapsulation, loading efficiency and in vitro drug release of bupivacaine encapsulated with biodegradable PFU nanoparticles for the treatment of local anesthesia. Various concentrations of bupivacaine were encapsulated into nanoparticles and their encapsulation efficiencies and drug loading were investigated. Encapsulation efficiency was highest when 2.5% bupivacaine was encapsulated. Drug release behavior from the bupivacaine-loaded PFU nanoparticles followed a sustained release profile.


2018 ◽  
Vol 10 (6) ◽  
pp. 234 ◽  
Author(s):  
Harikiran Athmakur ◽  
Anand Kumar Kondapi

Objective: Despite sophisticated treatment regimens, there is no significant improvement in the mortality rates of glioblastoma due to insufficient dosage delivery, reoccurrence of tumors, higher systemic toxicity, etc. Since brain endothelial cells and glioblastoma cells express lactoferrin receptors, a target-specific drug delivery vehicle was developed using lactoferrin itself as a matrix, into which carmustine was loaded. The objective was to use carmustine loaded lactoferrin nanoparticles (CLN) to achieve higher therapeutic efficacy and target specificity compared to free carmustine.Methods: CLN were prepared using the Sol-oil method. The nanoparticles prepared were characterized for their size, shape, polydispersity, and stability using FESEM and DLS methods. Drug loading and drug releasing efficiencies were also estimated. Further, cellular uptake of nanoparticles and their antiproliferative efficacy against glioblastoma cells were evaluated.Results: Characterization of CLN showed that they were spherical with ≤ 41 nm diameter and exhibited homogeneously dispersed stable distribution. Loading efficiency of carmustine in CLN was estimated to be 43±3.7 %. Drug release from the nanoparticles was pH dependent with the maximum observed at pH 5. At physiological and gastric pH, drug release was lower, whereas maximum release was observed at endocytotic vesicular and around tumor extracellular pH. Confocal microscopic studies showed an active cellular uptake of nanoparticles. Results of antiproliferative analysis substantiated a higher antiproliferative effect for CLN compared to free carmustine.Conclusion: The results of the study demonstrated that CLN serves as a vital tool, in designing an effective treatment strategy for targeted drug delivery to glioblastoma.


Author(s):  
Jain Pushpendra ◽  
Mishra Amit ◽  
Yadav K. ◽  
Patil K. ◽  
Baghel S.

The aim of this study was to prepare nimesulide solid lipid nanoparticles (NIM-SLNs), to formulate the controlled drug release and to evaluate its physiochemical characteristics. NIM-SLNs were prepared by an emulsification and low-temperature solidification method. Additionally, attempts have been made to study the effect of individual process parameters (stirring speed and stirring time) and formulation parameters (Lecithin concentration, drug concentration and surfactant concentration) on entrapment efficiency. An approximately entrapment efficiency of (60%) and an average drug loading of (1.0 %) were achieved from optimized formulation of NIM-SLNs. The results show that the TMZ-SLNs had an average diameter of 187±1.23nm and in vitro drug release was conducted in phosphate-buffered saline (pH 7.4) at 37oC. The cumulative percentages drug release of nimesulide was found approximately 60% in 24 hours and release behavior was in accordance with Higuchi-equation. The results indicate that the SLNs is a promising controlled-release system. It may also allow a reduction in dosage and a decrease in systemic toxicity.


Author(s):  
Rajkumar Aland ◽  
Ganesan M ◽  
P. Rajeswara Rao ◽  
Bhikshapathi D. V. R. N.

The main objective for this investigation is to develop and optimize the solid lipid nanoparticles formulation of acitretin for the effective drug delivery. Acitretin loaded SLNs were prepared by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency. Based on the results from the analyses of the responses obtained from Taguchi design, three different independent variables including surfactant concentration (%), lipid to drug ratio (w/w) and sonication time (s) were selected for further investigation using central composite design. The  lipid Dynasan-116, surfactant poloxomer-188 and co surfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release and stability. All parameters were found to be in an acceptable range. TEM analysis has demonstrated the presence of individual nanoparticles in spherical shape and the results were compatible with particle size measurements.  In vitro drug release of optimized SLN formulation (F2) was found to be 95.63 ± 1.52%, whereas pure drug release was 30.12 after 60 min and the major mechanism of drug release follows first order kinetics release data for optimized formulation (F2) with non-Fickian (anomalous) with a strong correlation coefficient (R2 = 0.94572) of Korsemeyer-Peppas model. The total drug content of acitretin gel formulation was found to 99.86 ± 0.012% and the diameter of gel formulation was 6.9 ± 0.021 cm and that of marketed gel was found to be 5.7 ± 0.06 cm, indicating better spreadability of SLN based gel formulation. The viscosity of gel formulation at 5 rpm was found to be 6.1 x 103 ± 0.4 x 103 cp. The release rate (flux) of acitretin across the membrane and excised skin differs significantly, which indicates about the barrier properties of skin. The flux value for SLN based gel formulation (182.754 ± 3.126 μg cm−2 h−1) was found to be higher than that for marketed gel (122.345 ± 4.786 μg cm−2 h−1). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. This topically oriented SLN based gel formulation could be useful in providing site-specific dermal treatment of psoriasis


2020 ◽  
pp. 1-9
Author(s):  
Yunhong Wang ◽  
Rong Hu ◽  
Yanlei Guo ◽  
Weihan Qin ◽  
Xiaomei Zhang ◽  
...  

OBJECTIVE: In this study we explore the method to prepare tanshinone self-microemulsifying sustained-release microcapsules using tanshinone self-microemulsion as the core material, and chitosan and alginate as capsule materials. METHODS: The optimal preparation technology of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules was determined by using the orthogonal design experiment and single-factor analysis. The drug loading and entrapment rate were used as evaluation indexes to assess the quality of the drug, and the in vitro release rate was used to evaluate the drug release performance. RESULTS: The best technology of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules is as follows: the concentration of alginate is 1.5%, the ratio of tanshinone self-microemulsion volume to alginate volume to chitosan mass is 1:1:0.5 (ml: ml: g), and the best concentration of calcium chloride is 2.0%. To prepare the microcapsules using this technology, the drug loading will be 0.046%, the entrapment rate will be 80.23%, and the 24-hour in vitro cumulative release rate will be 97.4%. CONCLUSION: The release of the microcapsules conforms to the Higuchi equation and the first-order drug release model and has a good sustained-release performance.


2012 ◽  
Vol 62 (4) ◽  
pp. 529-545 ◽  
Author(s):  
Anuj Chawla ◽  
Pooja Sharma ◽  
Pravin Pawar

The aim of the study was to prepare site specific drug delivery of naproxen sodium using sodium alginate and Eudragit S-100 as a mucoadhesive and pH-sensitive polymer, respectively. Core microspheres of alginate were prepared by a modified emulsification method followed by cross-linking with CaCl2, which was further coated with the pH dependent polymer Eudragit S-100 (2.5 or 5 %) to prevent drug release in the upper gastrointestinal environment. Microspheres were characterized by FT-IR spectroscopy, X-ray diffraction, differential scanning calorimetry and evaluated by scanning electron microscopy, particle size analysis, drug loading efficiency, in vitro mucoadhesive time study and in vitro drug release study in different simulated gastric fluids. Stability studies of the optimized formulation were carried out for 6 months. SEM images revealed that the surface morphology was rough and smooth for core and coated microspheres, respectively. Core microspheres showed better mucoadhesion compared to coated microspheres when applied to the mucosal surface of freshly excised goat colon. The optimized batch of core microspheres and coated microspheres exhibited 98.42 ± 0.96 and 95.58 ± 0.74 % drug release, respectively. Drug release from all sodium alginate microsphere formulations followed Higuchi kinetics. Moreover, drug release from Eudragit S-100 coated microspheres followed the Korsmeyer-Peppas equation with a Fickian kinetics mechanism. Stability study suggested that the degradation rate constant of microspheres was minimal, indicating 2 years shelf life of the formulation.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (01) ◽  
pp. 37-43
Author(s):  
Ashwin A. Patil ◽  
Ketan B. Patil ◽  
Laxmikant R. Zawar

Present work focused on thiolation for enhancing the mucoadhesive potential of Gum kondagogu (GK). Thiolation of GK was done by esterification process with 80 % thioglycolic acid in presence of 7N HCl. Thiolated Gum kondagogu (ThioGK) was determined to possess 1.59 ±0.04 mmol of thiol groups/g of the polymer by Ellman’s method. ThioGK was characterized by FTIR, NMR, DSC, XRD, and FE-SEM. The tablets were prepared by direct compression using 75 mg of ThioGK and GK. Tablets containing ThioGK (F1) and GK (F2) were subjected to evaluation of weight variation, hardness and friability and show enhanced disintegration time, swelling behavior, drug release and mucoadhesion. In vitro drug release of batch F1 exhibits complete release of drug in 24 hr with zero order release kinetics. Comparative mucoadhesive strength was studied using chicken ileum by texture analyzer and revealed higher mucoadhesion of tablet containing ThioGK. From the above study, ThioGK was suitability exploited as mucoadhesive sustained release matrix tablet.


Sign in / Sign up

Export Citation Format

Share Document