Investigation on Nano-Sized ZnO Powder Doped with Al3+ Prepared by Sol-Gel Method

2012 ◽  
Vol 621 ◽  
pp. 3-7
Author(s):  
Yu Xiong ◽  
Ji Zheng ◽  
Song Lin Li ◽  
Xue Jia Liu ◽  
Lu Liang

Al3+-doped ZnO nano-powder was prepared by sol-gel process, using tin tetrachloride and titanium tetrachloride as starting materials. The crystallinity and purity of the powder were analyzed by X-ray diffraction spectrometer (XRD). And the size and distribution of Al3+-doped ZnO grains were studied using transmission electron microscope (TEM) and scanning electron microscope (SEM). The results showed that the Al3+ was successfully doped into the crystal lattice of tin oxide and that the electric conductivity of Al3+-doped ZnO sample was improved significantly.

Nanopages ◽  
2019 ◽  
pp. 1-11
Author(s):  
G. M. Taha ◽  
M. N. Rashed ◽  
M. S. El-Sadek ◽  
M. A. Moghazy

Abstract BiFeO3 (BFO) nanopowder was synthesized in a pure form via a sol- gel method based on glycol gel reaction. Effect of drying and preheating temperature on preventing other phases was studied. Many parameters were studied as calcination temperature and time & stirring temperature as well. The prepared powder was characterized by X-Ray Diffraction of powder (XRD) and Transmission Electron Microscope (TEM). High pure BiFeO3 was obtained by preheated process at 400 °C for 0.5 h and calcination at 600 °C for 0.5 h without any impurities compared to dry at110 °C.


2014 ◽  
Vol 543-547 ◽  
pp. 3741-3744
Author(s):  
Quan Jing Mei ◽  
Cong Ying Li ◽  
Jing Dong Guo ◽  
Gui Wang ◽  
Hai Tao Wu

The ecandrewsite-type ZnTiO3was successfully synthesized by the aqueous sol-gel method using TiO2dioxide and zinc nitrate as starting materials instead of expensive organic solvent and metal alkoxides. The as-prepared nanopowders were characterized by X-ray diffraction (XRD), differential thermal analysis (DTA) and transmission electron microscopy (TEM), respectively. The results showed that the calcination process of gel consisted of a series of oxidation and combustion reactions, accompanied by significantly exothermal effects. Highly reactive nanosized ZnTiO3powders were successfully obtained at 850 °C with particle size ~50 nm. By comparison, the aqueous sol-gel process was the most effective and least expensive technique used for the preparation of ZnTiO3nanopowders.


1997 ◽  
Vol 12 (3) ◽  
pp. 596-599 ◽  
Author(s):  
Ji Zhou ◽  
Qing-Xin Su ◽  
K. M. Moulding ◽  
D. J. Barber

Ba(Mg1/3Ta2/3)O3 thin films were prepared by a sol-gel process involving the reaction of barium isopropoxide, tantalum ethoxide, and magnesium acetate in 2-methoxyethanol and subsequently hydrolysis, spin-coating, and heat treatment. Transmission electron microscopy, x-ray diffraction, and Raman spectroscopy were used for the characterization of the thin films. It was shown that the thin films tend to crystallize with small grains sized below 100 nm. Crystalline phase with cubic (disordered) perovskite structure was formed in the samples annealed at a very low temperature (below 500 °C), and well-crystallized thin films were obtained at 700 °C. Although disordered perovskite is dominant in the thin films annealed below 1000 °C, a low volume fraction of 1 : 2 ordering domains was found in the samples and grows with an increase of annealing temperature.


2008 ◽  
Vol 8 (1) ◽  
pp. 335-339 ◽  
Author(s):  
Satyendra Singh ◽  
S. B. Krupanidhi

Multiferroic BiFeO3 (BFO) nanotubes have been successfully fabricated by the modified sol–gel method within the nanochannels of porous anodic aluminum oxide (AAO) templates. The morphology, structure and composition of the nanotubes were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), selected-area electron diffraction (SAED), high resolution TEM, (HRTEM) and energy-dispersive X-ray spectroscopy (EDX). Postannealed (650 °C for 1 h), BFO nanotubes were polycrystalline and X-ray diffraction study revealed that they are of the rhomohedrally distorted perovskite crystal structure. The results of SEM and TEM revealed that BFO nanotubes possessed a uniform length (up to 60 μm) and diameter (about 200 nm), which were controlled by the thickness and the pore diameter of the applied AAO template, respectively and the thickness of the wall of the BFO nanotube was about 15 nm. Y-junctions in the BFO nanotubes were observed. EDX analysis demonstrated that stoichiometric BiFeO3 was formed. HRTEM analysis confirmed that the obtained BFO nanotubes made up of nanoparticles (3–6 nm). The possible formation mechanism of BFO nanotubes was discussed.


2008 ◽  
Vol 23 (S1) ◽  
pp. S36-S41 ◽  
Author(s):  
D. A. A. Santos ◽  
A. D. P. Rocha ◽  
M. A. Macêdo

Nanocrystals of Zn1−xMxO (M=Mn, Co, or Ni) were grown using proteic sol-gel process, and the crystalline phases were identified by X-ray diffraction and Rietveld refinement. The nanocrystals have hexagonal wurtzite structure, with space group P63mc. The insertion of Mn2+ in the place of Zn2+ provoked an increase in the size of the nanocrystals, and the insertion of Co2+ or Ni2+ caused a reduction in the sizes of the nanocrystals, as compared to pure ZnO. This occurred because these three transition metals have very different ionic radii (Co2+=0.58 A˚, Mn2+=0.66 A˚, Ni2+=0.55 A˚, and Zn2+=0.60 A˚).


2016 ◽  
Vol 720 ◽  
pp. 290-295
Author(s):  
Veni Takarini ◽  
Alfend Rudyawan ◽  
Andri Hardiansyah ◽  
Rifki Septawendar ◽  
Niki Prastomo ◽  
...  

This study prepared Magnesium-Partially Stabilized Zirconia (Mg-PSZ) filler synthesis and direct foaming technique using egg whites, and impregnated by PMMA. The results were evaluated systematically by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and Transmission Electron Microscope (TEM). XRD results denote that the powder sample of MgPSZ was successfully formed with various crystal size of tetragonal and monoclinic phase. SEM and TEM observations revealed that nanoparticles MgPSZ were in spherical and long rounded shapes. Furthermore, SEM observation revealed that the direct foaming method were also successful in the formation of porous structures which favourable for impregnation process by PMMA. The use of egg whites as a polymer precursor in both methods demonstrates that porous specimens contained nanosized, predominantly tetragonal, Mg-PSZ powders were successfully synthesized. This shall yield an interesting prospect towards cheap, reliable, and biocompatible product to resemble the modulus elasticity of dentin.


2016 ◽  
Vol 850 ◽  
pp. 742-747
Author(s):  
Xiang Zhang ◽  
Ping Yun Li ◽  
Xiao De Guo ◽  
Ting Yan

Ultrafine alumina powders were synthesized through pyrocatechol and resorcinol mediated sol-gel process. Aluminum nitrate was applied as the Al source and PVP was the dispersant. X-ray diffraction (XRD) study displayed that γ-Al2O3 powders formed in the range of 800-900 °C, and then γ-Al2O3 transformed to α-Al2O3 at higher temperatures, pure α-Al2O3 powders could be obtained at 1000 °C by using resorcinol as organic monomer. The results of transmission electron microscopy (TEM) revealed that Al2O3 nanoparticles with γ crystalline phase had grain sizes in the range of 5-40 nm. Scanning electron microscopy (SEM) observation displayed that the morphology of the prepared α-Al2O3 powders had aggregated bodies formed by Al2O3 grains in the range of 0.2-0.5μm. These results provide a new way of preparation of alumina powders.


Author(s):  
Tang Ing Hua ◽  
Rita Sundari

This study has encountered with the fabrication of ferrites (Mg and Mn) using citric acid as anionic surfactant in sol-gel method followed by calcinations at varied temperatures (300, 600, 800°C) for 2h, respectively. The fabricated ferrites have been characterized by FTIR (Fourier Transform Infrared Spectroscopy), XRD (X-Ray Diffraction), SEM (Scanning Electron Microscope) and TEM (Transmission Electron Microscope). The FTIR spectrum for MnFeO3 shows that some functional groups already removed under 300°C calcination due to several oxidation numbers possessed by Mn leading to more flexibility. The XRD diffractograms for both MgFe2O4 and MnFeO3 show that the transition phase from amorphous to crystalline structure occurred in the temperature range of 300-600°C. The SEM mappings based on the Fe distribution for both MgFe2O4 and MnFeO3 show that more Fe distributed over the ferrites surface at 600 and 800°C, while the SEM mappings for both ferrites (Mg and Mn) show less Fe distribution at 300°C calcination, thus, it indicates more repulsion force bearing by higher amounts of Fe atoms at higher thermal agitation due to volume expansion. The TEM spectra proved that both ferrites existed as crystals after calcined at 600°C. The fabricated ferrites have remarkable electrical properties useful for the manufacture of semiconducting materials.


2016 ◽  
Vol 254 ◽  
pp. 200-206 ◽  
Author(s):  
Catalina Nuțescu Duduman ◽  
María Isabel Barrena Pérez ◽  
José Maria Gómez de Salazar ◽  
Ioan Carcea ◽  
Daniela Lucia Chicet ◽  
...  

Nanostructured SnO2 was prepared based on the sol-gel method used in the preparation of crystalline metal oxides. Sol-gel process can be described as a forming network of oxide polycondensation reaction of a molecular precursor in a liquid. Six experiments were carried out. Morphological structures and chemical composition were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) after calcination. It is noted that TEM images show that the spheres consist from nanocrystals, quantitative EDS analysis of the chemical composition shows an absence of the chlorine, which is a desired fact. For structural characterization of the material we used X-Ray Diffraction (XRD). The X-ray diffraction pattern for all samples indicates peaks which are agreeable with standard diffraction pattern of SnO2. The particle size of all samples was in the range of 28-92 nm calculated according to Scherrer equation.


WARTA AKAB ◽  
2021 ◽  
Vol 44 (2) ◽  
Author(s):  
Adya Rizky Pradipta ◽  
Riri Enriyani ◽  
Lintannisa Rahmatia ◽  
Andita Utami

Sintesis nanokomposit Fe3O4/TiO2 sebagai fotokatalis yang dapat diambil kembali dalam fotoreduksi limbah ion Ag(I) telah dilakukan. Sintesis diawali dengan sintesis magnetit (Fe3O4) melalui kopresipitasi dan sonikasi. Pelapisan TiO2 dilakukan dengan proses sol-gel dengan penambahan benih atau seed TiO2 degusa, dan diikuti perlakuan termal pada suhu 500 °C. Hasil sintesis dikarakterisasi dengan fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope-energy dispersive X-ray (SEM-EDX), vibrating sample magnetometer (VSM) dan diffuse reflectance-UV (DR-UV). Uji aktivitas fotokatalis nanokomposit Fe3O4/TiO2 dilakukan terhadap fotoreduksi ion Ag(I) dengan sistem batch dalam reaktor tertutup yang dilengkapi dengan lampu UV. Hasil penelitian menunjukkan bahwa nanokomposit Fe3O4/TiO2 memiliki kemampuan fotokatalitik yang baik. Nanokomposit Fe3O4/TiO2 memiliki kemampuan fotoreduksi lebih baik dibanding TiO2 tanpa modifikasi. Fotoreduksi ion Ag(I) 12,5 ppm berlangsung optimum pada pH 6 dan waktu reaksi 90 menit dengan hasil sebesar 98,6 %.


Sign in / Sign up

Export Citation Format

Share Document