Isotherm Adsorption Behavior and Drying Kinetics of Black Pepper

2012 ◽  
Vol 622-623 ◽  
pp. 1580-1585
Author(s):  
A. Sae-Khow ◽  
S. Tirawanichakul ◽  
Y. Tirawanichakul

The objective of this research were to evaulate equilibrium moisture contents (EMC) of black pepper using the gravimetric-static method and to study the drying kinetics of pepper using 1-stage hot air (HA) drying, 1-stage infrared (IR) drying, 2-stages drying with microwave (MW) and IR and 2-stages drying with MW and HA including to the specific energy consumption determination. For the first objective, the five saturated salt solutions were used for providing equlibrate state between pepper and surrounding at temperature ranging of 40-65°C correlated to relative humidity ranging of 10-90%. The results showed that EMC value decreased with increasing temperature at constant relative humidity. To evaluate the EMC value, the experimental data was simulated by four conventional EMC models and the criteria of the best fiiting models were determined by the determination of coefficient (R2) and the root mean square error (RMSE) value. The results showed that the calculated value using the Modified Oswin model was the most suitable for describing the relationship among equilibrium moisture content, relative humidity and temperature. To study effect of drying condition on drying kinetics, the initial moisture content and final moisture content after drying of papper sample was in ranges of 300-400% dry-basis and 12-16% dry-basis, respectively. The experimetal data were simulsted using empirical drying models and the results showed that the drying temperature relatively affected to drying rate of pepper while the evolution of moisture transfer was in the drying falling ratefor all drying strategies. The 1-stage IR drying and 2-stages drying with MW and IR provided low specific energy consumption (SEC) (0.11-0.15 MJ/kg of water evaporated) compared to the other drying strategies (0.87-1.52 MJ/kg of water evaporated). Moreover, the SEC of pepper drying decreased with increasing of drying temperature.

2014 ◽  
Vol 10 (2) ◽  
pp. 269-280 ◽  
Author(s):  
Hosain Darvishi ◽  
Mohammad Zarein ◽  
Saied Minaei ◽  
Hamid Khafajeh

Abstract The energy and exergy analysis, drying characteristics and mathematical modeling of the thin-layer drying kinetics of white mulberry using microwave drying were investigated. Results indicated that values of exergy efficiency (33.63–57.08%) were higher than energy efficiency (31.85–55.56%). Specific energy consumption increased with increasing microwave power while improvement potential decreased. The specific energy consumption and improvement potential varied from 3.97 to 6.73 MJ/kg water and 0.71 to 2.97 MJ/kg water, respectively. Also, energy efficiency decreased with decrease in moisture content and microwave power level. The best exergy and energy aspect was obtained by drying at 100 W microwave power. Drying took place mainly in warming up, constant rate and falling rate periods. The Page model showed the best fit to experimental drying data. Effective diffusivity increased with decreasing moisture content and increasing microwave power. It varied from 1.06 × 10−8 to 3.45 × 10−8 m2/s, with an energy activation of 3.986 W/g.


2021 ◽  
Vol 58 (1) ◽  
pp. 40-49
Author(s):  
Pankaj Kumar ◽  
Dhritiman Saha

Maize cobs (with husk and without husk) with initial moisture content of 78.38 % and 62.39 % (d.b.), respectively, were dried up to 20 % moisture content (d.b.) at three temperatures (45°C, 55°C and 65°C). Moisture ratios (MR) were calculated from moisture loss data and fitted to six (Newton’s, Page, Thompson, Modified Page, Henderson and Pabis, and Wang and Singh) drying mathematical models. Coefficient of determination (R2) and root mean square error (RMSE) were used for comparison of the models. From the analyses, Modified Page model showed the best fit to the experimental data with R2 varying from 0.9924 to 0.9968 for maize cob with husk and 0.9994 to 9989 for cobs without husk at given drying temperatures. The Modified Page model was found to be a superior model representing the drying kinetics of maize cob with and without husk at drying temperatures of 45, 55, and 65°C. The increase in drying temperature caused a reduction in drying time, and the drying took place in the falling rate period. Maize cobs with husk took more time for drying as compared to that without husk at the same temperature. The values of effective diffusivity lied between 1.079×10-8 m2.s-1 and 4.239×10-8 m2.s-1 for maize cob with husk, and between 1.194×10-8 m2.s-1 and 5.230×10-8 m2.s-1 for maize cob without husk. Effective diffusivity increased with an increase in drying temperature and was higher for maize cob without husk than that of with husk


Author(s):  
Supawan Tirawanichakul ◽  
Somkiat Prachayawarakorn ◽  
Warunee Varanyanond ◽  
Somchart Soponronnarit

The main objective of this work was to determine an effective moisture diffusivity of long grain rice during fluidized-bed drying (FBD) with inlet drying temperatures ranging of 40-150°C by 10°C/step and to investigate the specific energy consumption of the FBD process. Three initial moisture contents of the local indica paddy were set at 25.0, 28.8 and 32.5% dry-basis. The experimental results of thin-layer fluidized-bed drying for the long grain rice variety were determined and statistically analyzed by non-linear regression method. The results showed that an effective diffusion coefficient was highly dependent on the drying temperature, compared to initial moisture content. Consequently, the mathematical simulation of FBD, using the developed thin-layer drying mentioned above, was evaluated and used for predicting the paddy drying system. The simulated value of energy consumption in each of the drying conditions was comparatively simulated. The simulated results showed that a FBD with low temperatures and low initial moisture content gave higher specific energy consumption than drying with high temperatures and high initial moisture contents. The total specific energy consumption increased with a decreased fraction of re-circulated outlet drying air. According to the simulation results and our previous work, the conclusion is that the long grain paddy drying with FBD technique under a high initial moisture content and drying air temperature over 100°C is the good drying condition for recommendation.


1970 ◽  
Vol 26 (1) ◽  
pp. 16 ◽  
Author(s):  
S Balasubramanian ◽  
Rajkumar Rajkumar ◽  
K K Singh

Experiment to identify ambient grinding conditions and energy consumed was conducted for fenugreek. Fenugreek seeds at three moisture content (5.1%, 11.5% and 17.3%, d.b.) were ground using a micro pulverizer hammer mill with different grinding screen openings (0.5, 1.0 and 1.5 mm) and feed rate (8, 16 and 24 kg h-1) at 3000 rpm. Physical properties of fenugreek seeds were also determined. Specific energy consumptions were found to decrease from 204.67 to 23.09 kJ kg-1 for increasing levels of feed rate and grinder screen openings. On the other hand specific energy consumption increased with increasing moisture content. The highest specific energy consumption was recorded for 17.3% moisture content and 8 kg h-1 feed rate with 0.5 mm screen opening. Average particle size decreased from 1.06 to 0.39 mm with increase of moisture content and grinder screen opening. It has been observed that the average particle size was minimum at 0.5 mm screen opening and 8 kg h-1 feed rate at lower moisture content. Bond’s work index and Kick’s constant were found to increase from 8.97 to 950.92 kWh kg-1 and 0.932 to 78.851 kWh kg-1 with the increase of moisture content, feed rate and grinder screen opening, respectively. Size reduction ratio and grinding effectiveness of fenugreek seed were found to decrease from 4.11 to 1.61 and 0.0118 to 0.0018 with the increase of moisture content, feed rate and grinder screen opening, respectively. The loose and compact bulk densities varied from 219.2 to 719.4 kg m-3 and 137.3 to 736.2 kg m-3, respectively.  


Toxins ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 810
Author(s):  
Sabrina Sorlini ◽  
Carlo Collivignarelli ◽  
Marco Carnevale Miino ◽  
Francesca Maria Caccamo ◽  
Maria Cristina Collivignarelli

The hepatotoxin microcystin-LR (MC-LR) represents one of the most toxic cyanotoxins for human health. Considering its harmful effect, the World Health Organization recommended a limit in drinking water (DW) of 1 µg L−1. Due to the ineffectiveness of conventional treatments present in DW treatment plants against MC-LR, advanced oxidation processes (AOPs) are gaining interest due to the high redox potential of the OH• radicals. In this work UV/H2O2 was applied to a real lake water to remove MC-LR. The kinetics of the UV/H2O2 were compared with those of UV and H2O2 showing the following result: UV/H2O2 > UV > H2O2. Within the range of H2O2 tested (0–0.9 mM), the results showed that H2O2 concentration and the removal kinetics followed an increasing quadratic relation. By increasing the initial concentration of H2O2, the consumption of oxidant also increased but, in terms of MC-LR degraded for H2O2 dosed, the removal efficiency decreased. As the initial MC-LR initial concentration increased, the removal kinetics increased up to a limit concentration (80 µg L−1) in which the presence of high amounts of the toxin slowed down the process. Operating with UV fluence lower than 950 mJ cm−2, UV alone minimized the specific energy consumption required. UV/H2O2 (0.3 mM) and UV/H2O2 (0.9 mM) were the most advantageous combination when operating with UV fluence of 950–1400 mJ cm−2 and higher than 1400 mJ cm−2, respectively.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 9429-9443
Author(s):  
Xiaoxue Du ◽  
Hanping Mao ◽  
Chunguang Wang

The rheological properties of the compression process of sweet sorghum straw were studied. The selected experimental factors comprised of the compression density, cutting length, compression speed, and moisture content, and specific energy consumption were selected as the evaluation index of the compression characteristics. The Box-Behnken test scheme was used to analyze the response surface test. The results showed that the selected compression model and specific energy consumption model of the sweet sorghum straw compression process were obtained. The primary factors contributing to energy consumption were the cutting length, moisture content, and compression density. The optimal parameters were as follows: a compression density of 500 kg/m3, a cutting length of 20 mm to 30 mm, a moisture content of 60.06%, and a specific energy consumption of 66 kJ/kg. The results provided methods for reducing the total energy consumption of the compression process and a theoretical basis for the compression and bundling of sweet sorghum.


2016 ◽  
Vol 12 (6) ◽  
pp. 599-606 ◽  
Author(s):  
Flávia Daiana Montanuci ◽  
Raphaela Mulato Cavalcante ◽  
Camila Augusto Perussello ◽  
Luiz Mario de Matos Jorge

Abstract The study of process kinetics may aid the design and optimization of drying systems. This paper evaluated the influence of drying temperature (40, 60 and 80 °C) on the moisture content, drying rate, density, shrinkage and breakage of maize dried in two different dryers: oven and silo dryer. In both dryers, the temperature increase reduced drying time, final moisture content and shrinkage of the grains, however increased breakage. Drying rate was higher in the oven (6.4×10−4±2.3×10−4s−1 versus 5.4×10−4±1.2×10−4s−1), while shrinkage (15.2±4.7 % versus 24.4±5.6 %) and density increase (16.6±5.9 % versus 33.4±5.8 %) were more intense in the silo. There was a large release of husk in the silo dryer and the moisture content was slightly smaller in the lower layers respective to the upper ones.


2020 ◽  
Vol 7 (3) ◽  
pp. 163-170
Author(s):  
Irwansyah Irwansyah ◽  
Leopold Oscar Nelwan ◽  
Dyah Wulandani

Artificial drying method for arabica coffee beans requires a large consumption of electrical energy. Electricity is needed to rotate the blower which functions to circulate hot air to the dryer so that it can evaporate some of the water contained in the coffee beans. Most of the arabica coffee producing areas in Aceh province have not been reached by the electricity network so the use of artificial dryers cannot be used. To overcome this obstacle, the air flow circulation system with chimney effect can be used to drain dry air. The aim of this research is to design a chimney effect hybrid dryer which is heat source from solar and biomass energy, to test the performance of the dryer and compare it with the sun drying method. Parameters observed were temperature, moisture content and specific energy consumption of solar radiation and biomass. Dryer capacity is 5 kg of arabica coffee beans. The results showed that the chimney effect hybrid dryer can be used to dry 5 kg of coffee beans. The drying show that drying temperature on the dryer chamber ranged between 37.3-60.9°C. To reduce the moisture content of coffee beans from 52.5 to 12.8% bb, it was take 16-17 hours, while the sun drying method takes up to 46 hours (6 days). The total specific energy consumption of hybrid dryer was 57.1 MJ/kg of water vapor, while the specific energy consumption of the drying method was 59.4 MJ/kg of water vapor.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Onur Taşkın ◽  
Nazmi İzli ◽  
Ali Vardar

A photovoltaic energy-assisted industrial dryer has been analyzed. The dryer has been tested in various weather and working conditions with 3 kg of green peas from 75.6% initial moisture content to 20% final moisture content (w.b.). The effect of various drying air temperatures at three levels (40, 50, and 60°C) and two distinct air velocities (3 m/s and 4 m/s) was examined. Drying performance was assessed with regard to criteria including drying kinetics, specific and total energy consumption, and color and rehydration ratio. The results have proved that total drying duration reduces as air velocity rate and drying air temperature raise. Relying upon the drying durations, the generation performances of photovoltaic panels were between 5.261 and 3.953 W. On the other part, energy consumptions of dryer were between 37.417 and 28.111 W. The best specific energy consumption was detected in 50°C at 3 m/s for 600 minutes with 7.616 kWh/kg. All drying conditions caused darkening as color parameters. Rehydration assays have showed that rehydrated green peas attained higher capacity with raised air temperature and air velocity.


2012 ◽  
Vol 622-623 ◽  
pp. 1135-1139 ◽  
Author(s):  
A. Ekphon ◽  
T. Ninchuewong ◽  
S. Tirawanichakul ◽  
Y. Tirawanichakul

The main objective of this research was to study drying kinetics of air dried sheet (ADS) rubber using hot air and simulated drying kinetics by empirical model compared to experimental results. The 10-15 fresh rubber sheet with initial moisture content ranging of 23-40% dry-basis was dried by temperature of 40-70°C and air flow rate of 0.7 m/s. The fresh rubber sheet samples were dried until the desired final moisture content reached to 0.15% dry-basis. The experimental results showed that the drying rate of ADS rubber dried with hot air convection was faster than conventional natural air convection and drying rate was related to drying temperature. The experimental data was statistical non-linear regression analyzed by using 10 conventional empirical models. The coefficient of determination (R2) and root mean square error (RMSE) values were used as the criteria for selecting the best equation to describe the experimental data The results showed that the calculated results of Verma et al.’ model had a good relation to the experimental results. For specific energy evaluation, the results showed that at high drying temperature specific energy consumption of ADS rubber was relatively low compared to drying with low temperature. Finally, the determination of physical quality showed that.


Sign in / Sign up

Export Citation Format

Share Document