Preparation and Characterization of Bi-Doped LaAlO3 via Sol-Gel Process

2012 ◽  
Vol 624 ◽  
pp. 30-33 ◽  
Author(s):  
Gui Fang Sun ◽  
Xi Wei Qi ◽  
Teng Zhang ◽  
Xiao Yan Zhang ◽  
Huan Huan Chen

A series of Bi-doped BixLa1-xAlO3 (x=0.0, 0.1, 0.2, 0.3, 0.4) powders have been prepared by sol-gel method at 800°C. The influences of Bi doping content on phase, morphology, particle size, surface area, infrared absorption spectrum are discussed. XRD results show that there is no second phase in powders when x≤0.3, however, there exist impure phases when x≥0.4. The SEM analysis indicates the particle size of powder is 50-150nm. The specific surface area is 5-13 m2/g.

2013 ◽  
Vol 856 ◽  
pp. 285-289
Author(s):  
M.S. Muhd Norhasri ◽  
M.S. Hamidah ◽  
A.G. Abd Halim ◽  
A. Mohd Fadzil

Nano kaolin is product from kaolin also known as white clay. Kaolin was established as supplementary cementitious materials in concrete. The inclusion of kaolin in concrete enhances strength and durability properties and prolongs concrete life span. In this research, nanokaolin will be develop by using sol gel technique by that involves high energy milling. The process of milling been influenced by time of milling, ball and jar type. Ceramic type Zirconia (Zi) is been used as jar and ball type in this process. Time of milling was set from four (4) hours and one (1) days. Sample will be analyse by using particle size analyser to see the particle size and surface area of kaolin. From the result shows the optimum milling period for nanokaolin is one day base on particle size compare to 4 hours. Furthermore, one day milling produces a massive increment of surface area compare to others. In conclusion, one day can be considered as the optimum cycle time in the production of nano kaolin.


1994 ◽  
Vol 346 ◽  
Author(s):  
Kyung Moon Choi ◽  
Kenneth J. Shea

ABSTRACTPoly(l,4-phenylene)-bridged and poly(1,6-hexylene)-bridged silsesquioxanes (PPS and HPS) were prepared by the sol-gel process. The surface areas and pore diameters of these porous xerogels were obtained by BET and BJH methods, respectively. These porous materials were used as a confinement matrix for the growth of small-sized semiconductor and transition metal clusters. Quantum-sized CdS particles in PPS (approximately 58+12 Â) and HPS (91+16 Â) matrices were prepared by first soaking the xerogel in a CdCl2 solution. Following a washing with water, a Na2S solution was then added. EDAX and electron diffraction techniques were used to identify the CdS particles. The particle sizes of CdS in PPS and HPS were determined by both UV measurements and from TEM images. Small-sized Cr clusters were prepared in dried xerogels by an internal doping method. Mixed Cr/CdS phases were also prepared by internal loading of a chromium metal precursor. Following deposition of CdS the xerogel was heated at 120 °C under high vacuum, resulting in formation of intimately mixed phases of Cr metal and CdS. Changes in morphology, in particular the surface area and pore size distribution were noted. A decrease in surface area and an increase in pore size were observed as a result of Cr metal deposition.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
S. M. Ismail ◽  
Sh. Labib ◽  
S. S. Attallah

Nano-hematite (α-Fe2O3) and nano-cadmium ferrite (CdFe2O4) are prepared using template-assisted sol-gel method. The prepared samples are analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Mössbauer spectroscopy techniques for structural and microstructural studies. Nano-α-Fe2O3 with particle size ~60 nm is formed at 500°C, while nano-CdFe2O4 with smaller particle size (~40 nm) is formed at 600°C. It is found that with a simple sol-gel process we can prepare nano-CdFe2O4 with better conditions than other methods: pure phase at lower sintering temperature and time (economic point) and of course with a smaller particle size. So, based on the obtained experimental results, a proposed theoretical model is made to explain the link between the use of the sol-gel process and the formation of nano-CdFe2O4 as a pure phase at low temperature. This model is based on a simple magnetostatic interaction between the formed nuclei within the solution leading to the formation of the stable phase at low temperature.


2006 ◽  
Vol 13 (3-4) ◽  
pp. 251-258 ◽  
Author(s):  
Chaochin Su ◽  
Kuei-Fen Lin ◽  
Ya-Hui Lin ◽  
Bor-Hou You

2014 ◽  
Vol 552 ◽  
pp. 283-285
Author(s):  
Huan Huan Chen ◽  
Xiao Yan Zhang ◽  
Xi Wei Qi ◽  
Zhao Jie Zhou ◽  
Gui Fang Sun

A series of Fe-doped Bi2(FexGa1-x)4O9 (x=0.1,0.2,0.3,0.4,0.5) ceramics were synthesized by solid-phase method with sintering process. The influences of Fe doping content on phase, morphology, dielectric properties are discussed. XRD results show that there is no second phase in Fe-doped Bi2(FexGa1-x)4O9 ceramics. The SEM analysis indicates the grain size of as-prepared doped samples are relatively uniform and estimated to be about 1–4μm. The permittivity of as-prepared doped samples increases and the dielectric loss decrease compared to pure Bi2Ga4O9 ceramics.


2010 ◽  
Vol 148-149 ◽  
pp. 1575-1579
Author(s):  
Qing Zhang ◽  
Rui Yuan Niu ◽  
Min Wang ◽  
Bin Cui ◽  
Zhu Guo Chang

Li-Ti-O (abbreviated as LTO) nano-composites were synthesized via sol-gel process, and then doped BaTiO3 based X7R type ceramics. The LTO nano-composites and their ceramics were characterized by means of thermaogravimetric, Fourier-transform infrared, X-ray diffraction methods, transmission electron microscopy. We also characterized the dielectric properties of the LTO doped BaTiO3 based ceramics of X7R type. The results indicated that LTO nano-composites were nanometer scale powders. The pH value and calcining temperature had an influence on particle size of LTO sintering aids. At pH about 3 and with calcining at 600 °C, the nano-composites attained minimum particle size (about 10 nm). By adding 0.10 wt% of the LTO nano-composites, the temperature permittivity achieved about 4200 when sintered at 1240 °C for 4 h, and the dielectric properties met X7R standard.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1596 ◽  
Author(s):  
Natalia E. Noriega ◽  
Amanda Carrillo ◽  
Santos J. Castillo ◽  
María L. Mota

The reaction of cyclic carbonates with amines is the most attractive among the synthesis methods for isocyanate-free polyurethane. Non-isocyanate polyurethane films with SiO2 NPs fabricated by a sol-gel process are reported, where cyclic carbonates (CC) were produced under mild conditions by CO2 insertion in an epoxide complex in the presence of LiCl. A reaction of CC and polyamines was carried out in a low concentration polymer matrix of PVA. The materials were characterized by 1H-NMR, FTIR, UV-Vis, SEM, TGA, DTG, and a KD2 pro technique. polymer FTIR results are consistent with the literature, even with the use of a non-conventional methodology, where the found chemical interactions values were 3330, 2930 and 1637 cm−1. There are differences in the polymers’ morphologies due to the presence and absence of SiO2 NPs according to SEM, where the spherical morphology and homogenous particle size distribution of NPs around 100 nm. According to TGA results, all polymers showed their last stage decomposition after 300 °C and polymers with higher concentration of NPs showed even better stability. Due to the obtained results, the polymers have the potential to be used for thermal insulation without negative effect on the environment.


2013 ◽  
Vol 364 ◽  
pp. 631-634
Author(s):  
Yu Xi Yu ◽  
Yong Chen

The experimental results on the synthesis and characterization of tetraethoxysilane (TEOS)/ methyltrimethoxysilane (MTMS)-based silica aerogels using two step sol-gel process via supercritical drying, are described. The obtained TEOS/MTMS-based aerogel showed properties of 0.1g/cm3 density, 95.5% porosity and 1070 m2/g specific surface area.


2010 ◽  
Vol 148-149 ◽  
pp. 1062-1066 ◽  
Author(s):  
Ren Bo Yang ◽  
Wei Guo Fu ◽  
Xiang Yun Deng ◽  
Zhong Wen Tan ◽  
Yan Jie Zhang ◽  
...  

The (Ba0.88Ca0.12)( Zr0.12Ti0.88)O3 powders and piezoelectric ceramics were prepared by sol-gel process. The reaction process was analyzed with the help of thermo gravimetric and differential scanning calorimetry. X-ray diffraction characterized results showed that the structure of the (Ba0.88Ca0.12)( Zr0.12Ti0.88)O3 powders was perovskite structure and the particle size was approximately 37nm. Piezoelectric measurements revealed that Curie temperature and the maximum piezoelectric coefficient d33 is 95°C and 215pm/V, respectively.


2019 ◽  
Vol 20 (4) ◽  
pp. 49-54
Author(s):  
Hussam Jumaah Mousa ◽  
Hussein Qasim Hussein

   The present research was conducted to synthesis Y-Zeolite by sol-gel technique using MWCNT (multiwalled carbon nanotubes) as crystallization medium to get a narrow range of particle size distribution with small average size compared with ordinary methods. The phase pattern, chemical structure, particle size, and surface area were detected by XRD, FTIR, BET and AFM, respectively. Results shown that the average size of Zeolite with and without using MWCNT were (92.39) nm and (55.17) nm respectively .Particle size range reduced from (150-55) nm to (130-30) nm. The surface area enhanced to be (558) m2/g with slightly large pore volume (0.231) km3/g was obtained. Meanwhile, degree of crystallization decreased to 120%.


Sign in / Sign up

Export Citation Format

Share Document