Couple Model for Predicting Behaviors of Underwater Towed Systems under Effect of Heave and Pitch Motion of Ship

2012 ◽  
Vol 629 ◽  
pp. 581-586
Author(s):  
Zhi Jiang Yuan ◽  
Lian Gan Jin ◽  
Wei Chi ◽  
Heng Dou Tian

Underwater towed systems have the many applications in exploitation of underwater environments. While in the research exists which is about the numerical models of towed system, the relatively simple model of the towed body is used and the dynamic of the towing ship is neglected. The towing ship as part of towed system, its heave and pitch motion are coupled and highly non-linear. Considering the dynamic of three parts of towed system is important. In the paper, a newly couple model is developed to predict the behaviors of underwater towed systems under effect of the heave and pitch motion of towing ship. We use a finite difference method as the towed cable and is coupled with the non-linear numerical models of a towing ship and a towed body. Illustrative application of the coupling model is presented. The numerical results show the heave and pitch motion of towing ship affect the motion of towed body.

Author(s):  
L. Salles ◽  
M. Vahdati

The aim of this paper is to study the effects of mistuning on fan flutter and to compare the prediction of two numerical models of different fidelity. The high fidelity model used here is a three-dimensional, whole assembly, time-accurate, viscous, finite-volume compressible flow solver. The Code used for this purpose is AU3D, written in Imperial College and validated for flutter computations over many years. To the best knowledge of authors, this is the first time such computations have been attempted. This is due to the fact that, such non-linear aeroelastic computations with mistuning require large amount of CPU time and cannot be performed routinely and consequently, faster (low fidelity) models are required for this task. Therefore, the second model used here is the aeroelastic fundamental mistuning model (FMM) and it based on an eigenvalue analysis of the linearized modal aeroelastic system with the aerodynamic matrix calculated from the aerodynamic influence coefficients. The influence coefficients required for this algorithm are obtained from the time domain non-linear Code by shaking one blade in the datum (tuned) frequency and mode. Once the influence coefficients have been obtained, the computations of aero damping require minimal amount of CPU time and many different mistuning patterns can be studied. The objectives of this work are to: 1. Compare the results between the two models and establish the capabilities/limitations of aeroelastic FMM, 2. Check if the introduction of mistuning would bring the experimental and computed flutter boundaries closer, 3. Establish a relationship between mistuning and damping. A rig wide-chord fan blade, typical of modern civil designs, was used as the benchmark geometry for this study. All the flutter analyses carried out in this paper are with frequency mistuning, but the possible consequences of mistuned mode shapes are briefly discussed at the end of this paper. Only the first family of modes (1F, first flap) is considered in this work. For the frequency mistuning analysis, the 1F frequency is varied around the annulus but the 1F mode shapes remain the same for all the blades. For the mode shape mistuning computations, an FE analysis of the whole assembly different mass blades is performed. The results of this work clearly show the importance of mistuning on flutter. It also demonstrates that when using rig test data for aeroelastic validation of CFD codes, the amount mistuning present must be known. Finally, it should be noted that the aim of this paper is the study of mistuning and not steady/unsteady validation of a CFD code and therefore minimal aerodynamic data are presented.


Author(s):  
A. A. N. Al-jawi ◽  
A. G. Ulsoy ◽  
Christophe Pierre

Abstract An investigation of the localization phenomenon in band/wheel systems is presented. The effects of tension disorder, interspan coupling, and translation speed on the confinement of the natural modes of free vibration are investigated both theoretically and experimentally. Two models of the band/wheel system dynamics are discussed; a simple model proposed by the authors [1] and a more complete model originally proposed by Wang and Mote [9]. The results obtained using the simple interspan coupling model reveal phenomena (i.e., eigenvalue crossings and veerings and associated mode localization) that are qualitatively similar to those featured by the more complex model of interspan coupling, thereby confirming the usefulness of the simple coupling model. The analytical predictions of the two models are validated by an experiment. A very good agreement between the experimental results and the theoretical ones for the simple model is observed. While both the experimental observations and the theoretical predictions show that a beating phenomenon takes place for ordered stationary and axially moving beams, beating is destroyed (indicating the occurrence of localization) when any small tension disorder is introduced especially for small interspan coupling (i.e., when localization is strongest).


2008 ◽  
Vol 26 (11) ◽  
pp. 3411-3428 ◽  
Author(s):  
P. Daum ◽  
M. H. Denton ◽  
J. A. Wild ◽  
M. G. G. T. Taylor ◽  
J. Šafránková ◽  
...  

Abstract. Among the many challenges facing the space weather modelling community today, is the need for validation and verification methods of the numerical models available describing the complex nonlinear Sun-Earth system. Magnetohydrodynamic (MHD) models represent the latest numerical models of this environment and have the unique ability to span the enormous distances present in the magnetosphere, from several hundred kilometres to several thousand kilometres above the Earth's surface. This makes it especially difficult to develop verification and validation methods which posses the same range spans as the models. In this paper we present a first general large-scale comparison between four years (2001–2004) worth of in situ Cluster plasma observations and the corresponding simulated predictions from the coupled Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme (BATS-R-US) MHD code. The comparison between the in situ measurements and the model predictions reveals that by systematically constraining the MHD model inflow boundary conditions a good correlation between the in situ observations and the modeled data can be found. These results have an implication for modelling studies addressing also smaller scale features of the magnetosphere. The global MHD simulation can therefore be used to place localised satellite and/or ground-based observations into a global context and fill the gaps left by measurements.


Author(s):  
Marco Valente ◽  
Gabriele Milani

Many existing reinforced concrete buildings were designed in Southern European countries before the introduction of modern seismic codes and thus they are potentially vulnerable to earthquakes. Consequently, simplified methodologies for the seismic assessment and retrofitting of existing structures are required. In this study, a displacement based procedure using non-linear static analyses is applied to a four-storey RC frame in order to obtain an initial estimation of the overall inadequacy of the original structure as well as the extent of different retrofitting interventions. Accurate numerical models are developed to reproduce the seismic response of the RC frame in the original configuration. The effectiveness of three different retrofitting solutions countering structural deficiencies of the RC frame is examined through the displacement based approach. Non-linear dynamic analyses are performed to assess and compare the seismic response of the frame in the original and retrofitted configurations.


2020 ◽  
Vol 20 (13) ◽  
pp. 2041008
Author(s):  
Pinelopi Kyvelou ◽  
David A. Nethercot ◽  
Nicolas Hadjipantelis ◽  
Constantinos Kyprianou ◽  
Leroy Gardner

The importance of allowing for the many different types of structural interaction that have an effect on the performance of light gauge members when used in practical situations is emphasized. A distinction is drawn between internal interactions involving the various plate elements of the steel profiles and external interactions involving the other components in the system. Although full-scale testing of representative systems can capture this behavior, the costs involved make this an impractical general basis for design; codified methods generally consider only isolated plates within members and isolated members within systems, thereby neglecting the potentially beneficial effects of both forms of interaction. Properly used, modern methods of numerical analysis offer the potential to systematically allow for both forms of interaction — provided the numerical models used have been adequately validated against suitable tests. The use of such an approach is explained and illustrated for three commonly used structural systems: roof purlins, floor beams, and columns in stud walls. In each case, it is shown that, provided sufficient care is taken, the numerical approach can yield accurate predictions of the observed test behavior. The subsequently generated large portfolio of numerical results can then provide clear insights into the exact nature of the various interactions and, thus, form the basis for more realistic design approaches that are both more accurate in their predictions and which lead to more economic designs. Building on this, modifying existing arrangements so as to yield superior performance through specific modifications is now possible. Two such examples, one in which improved interconnection between the components in a system is investigated and a second in which prestressing is shown to provide substantial enhancement for relatively small and simple changes, are presented.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 979 ◽  
Author(s):  
Alessandro Aliberti ◽  
Lorenzo Bottaccioli ◽  
Enrico Macii ◽  
Santa Di Cataldo ◽  
Andrea Acquaviva ◽  
...  

In recent years, the contrast against energy waste and pollution has become mandatory and widely endorsed. Among the many actors at stake, the building sector energy management is one of the most critical. Indeed, buildings are responsible for 40 % of total energy consumption only in Europe, affecting more than a third of the total pollution produced. Therefore, energy control policies of buildings (for example, forecast-based policies such as Demand Response and Demand Side Management) play a decisive role in reducing energy waste. On these premises, this paper presents an innovative methodology based on Internet-of-Things (IoT) technology for smart building indoor air-temperature forecasting. In detail, our methodology exploits a specialized Non-linear Autoregressive neural network for short- and medium-term predictions, envisioning two different exploitation: (i) on realistic artificial data and (ii) on real data collected by IoT devices deployed in the building. For this purpose, we designed and optimized four neural models, focusing respectively on three characterizing rooms and on the whole building. Experimental results on both a simulated and a real sensors dataset demonstrate the prediction accuracy and robustness of our proposed models.


Sign in / Sign up

Export Citation Format

Share Document