Research of Nanometer TiO2/PF Composites and the Properties of Semi-Metallic Friction Material

2013 ◽  
Vol 631-632 ◽  
pp. 239-245 ◽  
Author(s):  
Hua Wei Nie ◽  
Yuan Kang Zhou ◽  
Yang Cao ◽  
Guo Qing Li

A type of phenolic resin (PF) was prepared by using TiO2 nanoparticles modified with KH-550 as composite filler and modifier, and then the composite modified PF were used as adhesive to prepare semi-metallic friction materials samples. TG analysis of the prepared nano-TiO2 /PF composites was conducted on SETARAM-TG2DSC92216 thermal analyzer that was made in France, and the friction and wear property comparison tests of the samples were carried out on XD-MSM fixed speed friction-wear machine. The results show that the heat resistance of phenolic resin after being compositely modified by TiO2 nanoparticles can be improved, carbon residue rate increases10% at 600°C;the friction coefficient of the corresponding sample slightly increases;the wear rate clearly decreases at high temperature, and wear rate decreases 10% at 350°C.

2011 ◽  
Vol 399-401 ◽  
pp. 1725-1728
Author(s):  
Yun Hai Ma ◽  
Bao Gang Wang ◽  
Sheng Long Shen ◽  
Xue Ying Geng ◽  
Hong Lei Jia ◽  
...  

In this experiment, the effects of hair fibers on friction and wear property, Rockwell hardness and impact strength of friction materials were examined. The results showed that friction coefficient increases and stabilizes and specific wear rates were decrease as the hair fibers were filled and, particularly, 1% of the hair fiber content had a significant effect in the friction material. As temperature was changed, the stability of the friction coefficient of friction materials can be improved, the Rockwell hardness decrease and the impact strengths increase by way of increasing the content of hair fibers. The worn surfaces of friction materials were examined by scanning electron microscopy and wear mechanisms were analyzed. So it’s a kind of quite good non-asbestos friction material.


2012 ◽  
Vol 622-623 ◽  
pp. 1559-1563
Author(s):  
M.A. Sai Balaji ◽  
K. Kalaichelvan

The formulation of a brake pad requires the optimization of multiple performance criteria. To achieve a stable and adequate friction (µ), the brake pad materials should have low fade and higher recovery characteristics coupled with less wear and noise. Among the properties mentioned, resistance to fade is very difficult to achieve. The type and amount of resin in the friction material is very critical for structural integrity of the composites. The binder should not deteriorate under any diverse conditions. The thermal stability of friction materials and its capacity to bind its ingredients collectively under diverse conditions depend upon the quality and proportion of resin. The current work evaluates the fade and recovery behaviour of developed friction composites from two different resins which are traditional straight phenolic resin and the alkyl benzene modified phenolic resin. Two brake pads with these different resins were fabricated as per Industrial Standard. TGA is carried between 150 – 4000 C as this zone of temperature is very critical which accounts for the weight loss (Thermal degradation). Friction and wear studies were carried out on a friction coefficient test rig as per SAE J661a standard. The results showed that the fade and wear of the friction materials were closely related to the thermal decomposition of the binder resin and durability of the contact plateaus, which were produced by the compaction of wear debris around hard ingredients on the rubbing surface. It was clearly observed that the friction materials with modified resin showed significant reduction in fade %. Friction materials made with higher thermal stability showed resistance to fade. However wear didn’t show much noticeable changes.


2011 ◽  
Vol 686 ◽  
pp. 401-405 ◽  
Author(s):  
Ning Zhang ◽  
Li Xiang Chen ◽  
Yan Sheng Yin ◽  
Ye Han ◽  
Zong Feng Wang

Hybrid friction materials were manufactured with glass fiber, potassium titanate whisker and aramid fiber as reinforcement and the phenolic resin modified by lumbar pericarps oil as matrix material. The effects of load and sliding distance on friction and wear properties were studied by single variable experiments. The worn surfaces of the samples were studied by Scanning Electron Microscope (SEM). The results showed that friction coefficient and wear rate can be significantly increased when the load was increased up to 250N. The friction coefficient varied between 0.25 and 0.3 while the wear rate reduced to 0.49×10-6 g/(N·m) in the sliding distance longer then 80m. Wear mechanism of samples were to be adhesive and abrasive wear.


2018 ◽  
Vol 149 ◽  
pp. 01090 ◽  
Author(s):  
Abdelmajid Hamdaoui ◽  
El Houcine Jaddi

The wheels of a railway axle are the most critical components of a train. These wheels are subjected to several forms of deterioration, including wear, which significantly influences the safety of traffic as well as the dynamic stability of railway vehicles and the lifetime of wheelsets. The objective of this work is to compare the effect of two friction materials of brake shoes at the damage and the wear rate of the ER8 steel wheels.


2017 ◽  
Vol 30 (2) ◽  
pp. 247-253 ◽  
Author(s):  
Ye Zhu ◽  
Yingshuang Shang ◽  
Haibo Zhang ◽  
Lianjun Ding ◽  
Yunping Zhao ◽  
...  

Poly(ether sulfone) (PES) with high coefficient of friction (COF) and wear rate needs treatment to enhance its tribological property in engineering plastic area. Here, the low surface energy of perfluorocarbon chains terminated poly (ether sulfone) (PES-F) had been used to improve the tribological property of such self-lubricating materials. In this research, the performance enhancement due to the existence of perfluorocarbon group on the material surface was discussed on improvement of anti-friction and wear resistance. On the premise of mechanical strength guarantee, the variation regularity of COF and volume wear rate of PES-F were quantitatively analyzed through the pin-on-disc wear test apparatus, combined with X-ray photoelectron spectroscopy analysis. It was found that PES-F exhibited the best tribological property during the initial phases of friction test, attributing to the highest content of F on the material surface. Observation of PES-F worn surface and wear debris revealed that the COF and wear rate of modified PES were decreased not only due to the effect of perfluorocarbon group but also by the change of worn surface morphology, both of which were the main reasons for anti-friction and anti-wear property enhancement.


2008 ◽  
Vol 51 (6) ◽  
pp. 771-778 ◽  
Author(s):  
Yanli Fan ◽  
Vlastimil Matějka ◽  
Gabriela Kratošová ◽  
Yafei Lu

2014 ◽  
Vol 788 ◽  
pp. 621-626 ◽  
Author(s):  
Jing Dan Wei ◽  
Hua Chen

Cu-based friction materials were prepared by powder metallurgy technology. The effect of the graphite on friction and wear properties of materials was investigated. The experimental results indicate that the wear rate of the materials increased with increasing speed. The wear rate of the materials with the graphite with the size of 300~600μm decreased with increasing graphite content, indicating that the graphite size of 300~600μm showed the good lubricating effect. The lubricating film made the friction coefficient decrease. The wear resistance of materials with 100~300μm graphite was degraded at high graphite content, and the graphite size of 100~300μm has bad effect on the strength of materials. The wear debris made the friction coefficient slightly increase with the increase of graphite content. The material with the graphite content of 10% and the graphite size of 300~600μm has the best friction and wear properties.


Author(s):  
Kingsford Koranteng ◽  
Heyan Li ◽  
Biao Ma ◽  
Chengnan Ma

Studies have shown that reinforced paper-based friction material with 600 µm carbon fiber length possesses a high dynamic friction coefficient but is subjected to abrasive wear during sliding contact. This work is devoted to further investigate the effect of operating variables on this friction material subjected to high operating conditions. A pin-on-disc test was carried out to determine the tribological behavior of this friction material sliding against 65Mn steel. The friction and wear rate results from measurements were discussed. The highest friction value of about 0.3 was obtained by varying the applied load at 120 N while the lowest friction value close to 0.02 was obtained when the sliding speed was 0.026 m/s. Increasing the sliding speed above 0.30 m/s caused constant temperature (175 °C) to fluctuate due to high friction heat generation on the sliding surface. The highest wear rate was 1.42 × 10−15m3/Nm by varying the sliding speed at 1.31 m/s. In contrast, the lowest wear rate was 2.1 × 10−16m3/Nm when the temperature was at 400 °C.


2020 ◽  
Vol 984 ◽  
pp. 125-130 ◽  
Author(s):  
Tian Guo Wang ◽  
X.Y. Liu ◽  
J.J. Hua

Cu-based friction materials were prepared by powder metallurgy technology. The effect of Fe content on friction and wear properties of Cu-based friction materials has been investigated. The results indicate that Fe content has great effects on the wear ability of Cu-based friction materials. Fe works as frictional component in copper-based friction materials, influening the mechanical and frictional property of materials. With increasing Fe content, the hardness and friction coefficient of Cu-based friction materials stability increase, the wear rate of the friction materials decreases. When Fe content is 6%, the materials posses stably high friction factors, as well as good wear ability.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2988 ◽  
Author(s):  
Yu ◽  
Ma ◽  
Chen ◽  
Li ◽  
Ma ◽  
...  

Copper-based friction material (CFM) and paper-based friction material (PFM) are the two most commonly used clutch friction materials. The friction and wear characteristics of these two kinds of friction materials under dry conditions were investigated by the pin-on-disc test over a broad range of applied loads, rotating speeds and ambient temperatures. Before experiments, the running-in test was conducted to stabilize the coefficient of friction (COF) and wear amount of the test samples. After experiments, the metallographic micrographs of the tested samples were presented to investigate the wear mechanisms. Experimental results showed that both the COF and wear depth of the CFM are much greater than these of PFM. The COF of CFM decreases with the increase of applied load, and changes slightly with the variation of rotating speed, whereas it increases first and then decreases with the increase of ambient temperature. However, the COF of PFM decreases dramatically with the increase of the rotating speed and ambient temperature, while it remains stable at first and then decreases slowly as the applied load increases. Additionally, under such three working conditions, the wear depth of CFM changes linearly, while the wear depth of PFM varies greatly. This study can be used as a guide for selecting friction materials for clutches with different applications.


Sign in / Sign up

Export Citation Format

Share Document