Simulation and Analysis on Mechanical Strength of Reinforced Concrete Beam Undergoing a Fire

2013 ◽  
Vol 647 ◽  
pp. 809-813
Author(s):  
Cherng Shing Lin ◽  
Te Chi Chen ◽  
Chia Chun Yu ◽  
Shih Cheng Wang

Reinforced concrete is a common structure in buildings in Taiwan. Steel bars, concrete materials and the structural strength of the reinforced concrete deteriorate due to high temperature deriving from a fire. Therefore, it is essential to assess its structural safety and analyze whether the architectural structure will remain its design strength undergoing a fire. This study employs Fire Dynamics Simulation (FDS), fire simulation software, to construct model of thermal flow field. By integrating FDS with PHOENICS, thermal flow software, this study also calculates the effect of the fire’s thermal transmission on the building, investigates the effect of the fire size and the mode the beam undergoing a fire on change of the structural strength, and provides quantified data for safety assessment for buildings which have undergone fires.

2017 ◽  
Vol 21 ◽  
pp. 102-107
Author(s):  
Constantin Sorin Scutarasu ◽  
Dan Diaconu-Şotropa ◽  
Marinela Barbuta

Important goals in the fire safety design, such as preventing loss of life and goods damage, are achieved by maintaining the stability of structures exposed to fire for a period of time established by norms and standards. Real fire scenarios confirm that the specific technical regulations which actually have a prescriptive character (both national and international) do not deal with sufficient possibilities regarding the assessment of structural fire safety. The new approach on structural safety, based on engineering notions, gives us additional prospects on it and it is included in the issues of the fire safety design of structures. A relatively new field of study, known by a few professionals focused on fire safety (but well acknowledged in the research area), fire safety design met with lots of changes and restructuring of the governing concepts and procedures and of the information with which they operate, due to the fast accumulation of experience in this area of engineering activity. Consequently, after countries such as Australia, Canada, New Zeeland or USA provided towards professionals specific technical regulations for fire safety design, groups of experts in these aforementioned countries have joined their forces to try to diminish the differences that exists between those regulations and to give a unitary character to them, a better conceptualized engineering approach of the fire safety design. The result: occurrence of the publication International Fire Engineering Guidelines (last edition from 2005). The systematic approach of fire safety design in constructions pointed, once again, the possibility of modular organization of this field of study, the relations between modules being established according to the objective or objectives in the fire safety design for a specified building. This article aims to put forward, from this modularized perspective, the study of the fire safety design of a building exposed to fire; hence, the practical part of the article exhibits the numerical simulation of initialization and development of the fire process for a large scale religious building. The main features of the building represent the amount of space that facilitates the spreading of smoke and warm gases and which increases the risk of damaging the structural reinforced concrete elements. Application calls to specific numerical simulation with a higher degree of credibility, such as those realized by the FDS (Fire Dynamics Simulation) software.


Author(s):  
R Padma Rani & R Harshani

Structural analysis is used to assess the behavior of engineering structures under the application of loads. Usually, structural analysis methods include analytical,experimental and numerical methods is used in thisproject, however, only Analytical method is used and the values are taken from literature reference, to get familiar with Finite Element Analysis (FEA) using ANSYS, this is done to acquire practical knowledge about of the effect of the cover. The aim is to identify different failure modes under a range of loading conditions by changing the cover size to get the data of various parameters such as deflection, stress etc. Study of cover helps to observe the stability, reliability and the overall strength of the structural beam. This project attempts made to study the effect of cover on the behavior of reinforced concrete beam. Forthis analytical study, the Reinforced concrete beam specimen of 2000x100x200mm was considered.ANSYS software is a suite of engineering simulation software, based on finite element method, which can solve problems ranging from linear analysis to nonlinear analysis. The Doubly reinforced beams weremodeled by using geometry. In this model,various covers are provided. The beam specimensused in this study were tested under two-point static loading condition until failure of the specimen. From theobtained resultconcluded that the total deformation and directional deformation values are low in 25mm cover compared to other cases but the equivalent stress value is low in 35mm cover size compared to 25mm cover size.


2014 ◽  
Vol 644-650 ◽  
pp. 4876-4879
Author(s):  
Lin Su ◽  
Li Jing Wang ◽  
Lin Xue

By utilizing the fire dynamics simulation software FDS, simulate the fire extinguishing process of the diesel oil fire and gasoline fire with the compressed air foam agent, and compare it with the actual fire extinguishing test. Verify the reliability and the accuracy of the simulation implemented by FDS software on compressed air foam agent fire extinguishing process under the direct injection.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Constantin E. Chalioris ◽  
Nikos A. Papadopoulos ◽  
Georgia M. Angeli ◽  
Chris G. Karayannis ◽  
Asterios A. Liolios ◽  
...  

AbstractDamage detection at early cracking stages in shear-critical reinforced concrete beams, before further deterioration and their inevitable brittle shear failure is crucial for structural safety and integrity. The effectiveness of a structural health monitoring technique using the admittance measurements of piezoelectric transducers mounted on a reinforced concrete beam without shear reinforcement is experimentally investigated. Embedded “smart aggregate” transducers and externally bonded piezoelectric patches have been placed in arrays at both shear spans of the beam. Beam were tested till total shear failure and monitored at three different states; healthy, flexural cracking and diagonal cracking. Test results showed that transducers close to the critical diagonal crack provided sound and graduated discrepancies between the admittance responses at the healthy state and thedamage levels.Damage assessment using statistical indices calculated from the measurements of all transducers was also attempted. Rational changes of the index values were obtained with respect to the increase of the damage. Admittance responses and index values of the transducers located on the shear span where the critical diagonal crack formed provided cogent evidence of damage. On the contrary, negligible indication of damage was yielded by the responses of the transducers located on the other shear span, where no diagonal cracking occurred.


2019 ◽  
Vol 65 (1) ◽  
pp. 17-29 ◽  
Author(s):  
P. Woźniczka

AbstractThe paper presents the example of performance-based analysis for the existing large-space steel structure raised in 1980s. Hall is used as a paper products warehouse. Advanced mechanical simulations are performed using Safir software. Factors that impact the final fire resistance of the structure are discussed. Local and global imperfections and possible ways of structure modelling are taken into account. For selected cases advanced fire scenario that considers both localised fire and possibility of further ignition of stored goods is prepared using Fire Dynamics Simulation software. The results obtained indicate that added imperfections have little impact on the fire resistance of the structure and older-type steel hall roof without any fire protection could survive 30 minutes of fire. Main failure modes and values of structure’s deflections are also presented. Finally, performed simulations show that even for large-space structure the flashover is possible in some special cases.


2020 ◽  
pp. 49-52
Author(s):  
S.E. YANUTINA ◽  

The relevance of research in the factory laboratory of JSC «198 KZHI», which is part of the HC GVSU «Center», is dictated by the need to dispose of foam polystyrene waste that occurs in large quantities when producing the precast concrete. In the production of three-layer external wall panels, polystyrene heatinsulating plates of the PPS 17-R-A brand are used as an effective insulation material. The secondary use of PPS 17-R-A for its intended purpose, as a heater, is not possible. The volume of foam polystyrene produced varies from 25 to 45 m3 per month. Utilization (disposal) of foam polystyrene waste is an expensive undertaking. Its use as a filler in the production of expanded polystyrene blocks was tested in the factory’s laboratory to produce foam polystyrene concrete with specified physical and mechanical characteristics. The results of testing of expanded polystyrene concrete of classes B2.5 and B 7.5 are presented. It is shown that under the conditions of the reinforced concrete factory technology, the production of polystyrene concrete blocks is possible with the achievement of the design strength. The information presented in the article is aimed at motivating specialists who produce recast concrete to the possibility of using foam polystyrene waste for low-rise construction. Keywords: foam polystyrene, ecology, energy efficiency, foam polystyrene concrete, foam polystyrene heat insulation plates, precast concrete.


CORROSION ◽  
1988 ◽  
Vol 44 (10) ◽  
pp. 761-765 ◽  
Author(s):  
S. Feliu ◽  
J. A. Gonzalez ◽  
C. Andrade ◽  
V. Feliu

Safety ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 47
Author(s):  
Wattana Chanthakhot ◽  
Kasin Ransikarbum

Emergency events in the industrial sector have been increasingly reported during the past decade. However, studies that focus on emergency evacuation to improve industrial safety are still scarce. Existing evacuation-related studies also lack a perspective of fire assembly point’s analysis. In this research, location of assembly points is analyzed using the multi-criteria decision analysis (MCDA) technique based on the integrated information entropy weight (IEW) and techniques for order preference by similarity to ideal solution (TOPSIS) to support the fire evacuation plan. Next, we propose a novel simulation model that integrates fire dynamics simulation coupled with agent-based evacuation simulation to evaluate the impact of smoke and visibility from fire on evacuee behavior. Factors related to agent and building characteristics are examined for fire perception of evacuees, evacuees with physical disabilities, escape door width, fire location, and occupancy density. Then, the proposed model is applied to a case study of a home appliance factory in Chachoengsao, Thailand. Finally, results for the total evacuation time and the number of remaining occupants are statistically examined to suggest proper evacuation planning.


Sign in / Sign up

Export Citation Format

Share Document