Design and Realization of Auto-Programming System for SLS on CAD

2013 ◽  
Vol 662 ◽  
pp. 879-883
Author(s):  
Qing Guo Chen ◽  
Jun Cai Zhang

The detail and design of numerical control system for SLS are discussed. With the help of Visuall C++ and tool kit ObjectARX in AutoCAD, the data information of the 2D contours are extracted from model in AutoCAD by data processing, and these data are transferred to laser scanning data, finally NC codes for processing are generated. A new kind of adaptive slicing algorithm that determines the slicing thickness by comprehensively considering the surface normal and the cross-sectional area, is adopted in data processing. The preheat temperature, scanning speed, laser power and thickness of spreading layer are main factors to part quality in Selective Laser Sintering(SLS). Sintering parameters are optimized by orthogonal experimental design. And a matching rule between scanning velocity and laser power is established so as to realize the laser power matching in different scanning velocities. In order to maintain and transplanted the system, the modular structure is used in the procedure of system design.

2020 ◽  
Vol 861 ◽  
pp. 35-40
Author(s):  
Yu Liu ◽  
Tian Hao Xu ◽  
Ying Liu ◽  
Hai Cheng Zhang ◽  
Xing Xing Li ◽  
...  

The surface of 45 steel is quenched by CO2 laser with scanning speed 1000 mm/min and different laser power 1000W, 1200W, 1400W, 1600W and 1800W. Experiments are carried out to analyze microstructure, friction and wear properties of quenched 45 steel. The results show that the quenching layer thickness increases gradually with the increase of laser power,and the maximum value of quenching layer hardness increases first and then decreases. When the laser power is 1600W, the maximum hardness value is 883HV0.5. But when the laser power is 1800W, the hardness of quenching layer becomes to decrease. The reason is the surface of 45 steel becomes to melt. The wear volume increases first and then decreases too. When laser power is 1600W, the minimum wear volume is 0.08mm3, which is 6.4% to the wear volume of 45 steel matrix without laser quenching. Therefore, better microstructure and properties of 45 steel can be obtained when laser scanning speed is 1000mm/min and laser power is 1600W.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3860
Author(s):  
Xia Ye ◽  
Jiang Gu ◽  
Zhenmin Fan ◽  
Xiaohong Yang ◽  
Wei Xu

Many studies have shown that super hydrophobic surfaces have been applied to micro–nano structures and low surface energy materials. In the present study, infrared laser scanning and simple salinization modification were used to improve the hydrophobicity of a surface. When the scanning speed was 100 mm/s, the laser power was 30 W and the scanning interval was 200 μm, the apparent contact angle of surface was up to 157°. The assessment of surface characteristics revealed that decreasing scanning speed or increasing laser power were able to improve the hydrophobicity of the surface. After aging treatment, the superhydrophobic surface prepared by this method still had good durability.


2009 ◽  
Vol 83-86 ◽  
pp. 611-615
Author(s):  
Numan Abu-Dheir ◽  
Bekir Sami Yilbas

Laser welding of steel 316L sheets is considered and the effects of laser welding parameters on the laser weld quality and metallurgical changes in the weld section are presented. The laser weld quality is assessed through careful examination of weld geometrical features, and the resulting weld microstructure. Metallurgical changes in the weld sites are examined using optical, and electron scanning microscope (SEM). Two levels of heat inputs are used-1500W and 2000W; and two scanning speeds of 2cm/s and 4cm/s are used to laser weld 316L sheets. It is found that at the high laser power intensities, evaporation takes place in the irradiated region and as the laser power intensity increases further, a cavity is formed at the top surface of the welding cross section. A similar situation is also observed as the laser scanning speed reduces. The low diffusivity of the alloying elements at high temperatures preserves the segregation profile. The scattered partitioning of the cells and dendrite boundaries are observed due to the presence of Cr and Mo.


2016 ◽  
Vol 703 ◽  
pp. 34-38 ◽  
Author(s):  
Yun Long Wang ◽  
Lin Zhong Zhu ◽  
Cai Yan Chen ◽  
Zhi Chen Liu ◽  
Wei Xin Ren ◽  
...  

In this study, a series of deep micro holes were machined on thick GH4169 super alloy by the trepan drilling, using a millisecond pulsed laser which equipped to the numerical control processing system. The microstructure of the holes including surface and longitudinal morphologies, diameter, taper, circularity, micro cracks and recast layer were systematically characterized. The surface morphology and the longitudinal section of the drilled holes were observed by Scanning Electron Microscope and 3D Laser Scanning Confocal Microscope. The method of Minimum circumcircle method was employed to evaluate the entrance and exit end circularity. The results showed that the melt and spattering accumulating around the holes decreased with the augment of laser power. The diameter of the entrance showed an increasing tendency with the growing of laser power, but the exit end was not seriously affected by the power. The micro cracks and recast layer could be found obviously, the micro cracks appeared in those zones which thermal stress concentrated, the thickness of recast layer is about 20μm and the taper and circularity were optimized at a laser power of 80-100W.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1989
Author(s):  
Jonas Grünewald ◽  
Florian Gehringer ◽  
Maximilian Schmöller ◽  
Katrin Wudy

A major factor slowing down the establishment of additive manufacturing processes as production processes is insufficient reproducibility and productivity. Therefore, this work investigates the influence of ring-shaped beam profiles on process stability and productivity in laser-based powder bed fusion of AISI 316L. For this purpose, the weld track geometries of single tracks and multi-track segments with varying laser power, scan speed, hatch distance, and beam profile (Gaussian profile and three different ring-shaped profiles) are analyzed. To evaluate the process robustness, process windows are identified by classifying the generated single tracks into different process categories. The influence of the beam profiles on productivity is studied by analyzing the molten cross-sectional areas and volumes per time. When using ring-shaped beam profiles, the process windows are significantly larger (up to a laser power of 1050 W and a scanning speed of 1700 mm/s) than those of Gaussian beams (laser power up to 450 W and scanning speed up to 1100 mm/s), which suggests a higher process robustness and stability. With ring-shaped beam profiles, larger volumes can be stably melted per track and time. The weld tracks created with ring-shaped profiles are significantly wider than those generated with Gaussian profiles (up to factor 2 within the process window), allowing enlargement of the hatch distances. Due to the higher scanning speeds and the enlarged hatch distances for ring-shaped beam profiles, the process can be accelerated by a factor of approximately 2 in the parameter range investigated.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3720 ◽  
Author(s):  
Tatevik Minasyan ◽  
Sofiya Aydinyan ◽  
Ehsan Toyserkani ◽  
Irina Hussainova

The laser power bed fusion approach has been successfully employed to manufacture Mo(Si,Al)2-based composites through the selective laser melting of a MoSi2-30 wt.% AlSi10Mg mixture for high-temperature structural applications. Composites were manufactured by leveraging the in situ reaction of the components during printing at 150–300 W laser power, 500–1000 mm·s−1 laser scanning speed, and 100–134 J·mm−3 volumetric energy density. Microcomputed tomography scans indicated a negligible induced porosity throughout the specimens. The fully dense Mo(Si1-x,Alx)2-based composites, with hardness exceeding 545 HV1 and low roughness for both the top (horizontal) and side (vertical) surfaces, demonstrated that laser-based additive manufacturing can be exploited to create unique structures containing hexagonal Mo(Si0.67Al0.33)2.


Author(s):  
S. Ahmed ◽  
H. Doak ◽  
A. Mian ◽  
R. Srinivasan

During the DMLS process, sintering of the top layer creates melting and heat affected zone in previously sintered layers. In this paper, we will examine the effects of any given process parameter, such as laser power and laser scanning speed, on the mechanical properties and microstructural morphology within the processed layers.


Author(s):  
Pan Lu ◽  
Liu Tong ◽  
Wang Wen-hao ◽  
Gao Yu ◽  
Zhang Cheng-lin ◽  
...  

Abstract The prediction of the flow behavior of Metal micro-molten pool is prerequisite for high-quality Laser Powder Bed Fusion (L-PBF). In this study, mesoscopic scale numerical simulation modelling for L-PBF process was used to help understand the melting process of pure copper micro-melt pool.In this study, the orthogonal test was designed to study the influence of laser power, laser scanning velocity, hatching space on the flow behavior of molten pool and the overlapping rate of adjacent molten tracks. The results shows that laser scanning speed has the greatest influence on both the size and overlapping rate of the molten pool, and the overall trend was that the size of molten pool continues to increase as the volume energy density increases, and the maximum molten pool size was 243.6um × 110um with volume energy density 370.037 J/mm3, overlapping rate of adjacent molten tracks was 48.84% with volume energy density 285.71 J/mm3. The optimized pure copper laser process parameters were obtained: laser power 300 KW, laser scanning speed 500 mm/s, hatching space 0.07mm, overlapping rate 48.84%.


2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110446
Author(s):  
Hongwei Zhang ◽  
Meng Zhu ◽  
Siqi Ji ◽  
Jianjun Zhang ◽  
Hengming Fan

The large diameter pitch bearing was made of steel 42CrMo4 and the laser hardening process was used to improve its surface properties. In this paper, a numerical approach which can predict the temperature field and the hardened depth is provided for the laser hardening process of the 42CrMo4 steel. According to the simplification of the raceway structure of pitch bearing, the finite element model was constructed using ABAQUS software. Based on the actual process parameters, the transient thermal analysis was accomplished and the distribution of temperature field is analyzed. The hardened depth is determined according to the proposed temperature range. Laser power, laser scanning speed, and spot diameter were considered as input parameters, the experimental studies were performed based on orthogonal design in order to study the effects of process parameters. The finite element model is validated. The surface roughness and microstructure studies on treated surfaces were conducted. Also the micro-hardness testing was performed. The results show that the laser hardening increases surface hardness by about 3.8 times than that of the base material. The three parameters of laser power, laser scanning speed, and spot diameter have a coupling effect on the surface treatment. The input laser power density is more important.


2021 ◽  
Vol 1020 ◽  
pp. 157-163
Author(s):  
Dong Sheng Wang ◽  
Hao Yang ◽  
Li Ye Yue ◽  
Pei Pei Zhang

To investigate influences of multi-track overlapping on melting of preset MCrAlY coating during laser cladding plasma spraying, a three-dimensional finite element model of the continuously moving temperature field during multi-track laser cladding was constructed using the ANSYS parametric design language (APDL) based on the existing temperature field model during single-track laser cladding. According to analysis results of temperature field, temperature of samples increases gradually during laser cladding due to heat accumulation effect of laser scanning, and the molten pool expands gradually. There are evident differences among different scanning pathways. Therefore, it is impossible to get high-quality cladding coating with uniform melting and small dilution ratio. Molten pools with basically same sizes in different scanning pathways can be gained by decreasing laser power or increasing scanning speed in different tracks one by one. Similarly, differences of molten pools in different scanning pathways can be relieved effectively through preheating of samples. Through a closed-loop control over the highest cladding temperature, a more even cladding coating can be gained through adaptive control of laser power and / or scanning speed.


Sign in / Sign up

Export Citation Format

Share Document