Numerical Analysis on Bending Strength and Ductility of Compact Section I-Girders with HSB800 Steels

2013 ◽  
Vol 671-674 ◽  
pp. 851-854
Author(s):  
Byung H. Choi ◽  
Yong Myung Park

New high performance steel HSB800 have been developed in South Korea, the yield strength of which is equal to 690MPa. High strength steels typically show a lower ductility and a larger yield ratio than conventional steels. Since the inelastic design procedure of current AASHTO specifications is not permitted to the flanges and webs of nominal yield stress exceeding 485 MPa, this study is intended to present an assessment result of the compactness requirements for I-section girders by performing 3D nonlinear finite element analyses. On the hypothetical specimens designed to be compact-section girders, the numerical analysis was performed using the finite element code ABAQUS. From the analysis results, it is found that the compact section limits speculated in the 2007 AASHTO LRFD could be applicable to the design of HSB800 steel I-girders to reach the plastic moment. However, the inelastic design procedure does not surely confirm a sufficient flexural ductility. More extensive studies of HSB800 I-girders are still in need.

Author(s):  
Mohammad Mehdi Kasaei ◽  
Marta C Oliveira

This work presents a new understanding on the deformation mechanics involved in the Nakajima test, which is commonly used to determine the forming limit curve of sheet metals, and is focused on the interaction between the friction conditions and the deformation behaviour of a dual phase steel. The methodology is based on the finite element analysis of the Nakajima test, considering different values of the classic Coulomb friction coefficient, including a pressure-dependent model. The validity of the finite element model is examined through a comparison with experimental data. The results show that friction affects the location and strain path of the necking point by changing the strain rate distribution in the specimen. The strain localization alters the contact status from slip to stick at a portion of the contact area from the pole to the necking zone. This leads to the sharp increase of the strain rate at the necking point, as the punch rises further. The influence of the pressure-dependent friction coefficient on the deformation behaviour is very small, due to the uniform distribution of the contact pressure in the Nakajima test. Moreover, the low contact pressure range attained cannot properly replicate real contact condition in sheet metal forming processes of advanced high strength steels.


2013 ◽  
Vol 756-759 ◽  
pp. 161-165
Author(s):  
Qi Yin Shi ◽  
Chao Liu ◽  
Li Lin Cao ◽  
Zhen Wang

On the basis of the theoretical study and application of ordinary steel-encased concrete composite beam, this paper will focus on a new high-strength steel-encased concrete composite beam, and mainly studies high-performance steel Q420 and Q460, as well as high-strength concrete C60 and C80. Besides, an experimental study of 5 simply-supported beams is made, and the load-deflection curves of new SCCB are analyzed. The calculation formula of load which changes with depth of section and bending strength of the cross section is also analyzed. It is suggested that the calculated results announced should be identical with the experimental results.


2006 ◽  
Vol 129 (1) ◽  
pp. 155-161 ◽  
Author(s):  
Milan Veljkovic ◽  
Jonas Gozzi

Pressure vessels have been used for a long time in various applications in oil, chemical, nuclear, and power industries. Although high-strength steels have been available in the last three decades, there are still some provisions in design codes that preclude a full exploitation of its properties. This was recognized by the European Equipment Industry and an initiative to improve economy and safe use of high-strength steels in the pressure vessel design was expressed in the evaluation report (Szusdziara, S., and McAllista, S., EPERC Report No. (97)005, Nov. 11, 1997). Duplex stainless steel (DSS) has a mixed structure which consists of ferrite and austenite stainless steels, with austenite between 40% and 60%. The current version of the European standard for unfired pressure vessels EN 13445:2002 contains an innovative design procedure based on Finite Element Analysis (FEA), called Design by Analysis-Direct Route (DBA-DR). According to EN 13445:2002 duplex stainless steels should be designed as a ferritic stainless steels. Such statement seems to penalize the DSS grades for the use in unfired pressure vessels (Bocquet, P., and Hukelmann, F., 2001, EPERC Bulletin, No. 5). The aim of this paper is to present an investigation performed by Luleå University of Technology within the ECOPRESS project (2000-2003) (http://www.ecopress.org), indicating possibilities towards economic design of pressure vessels made of the EN 1.4462, designation according to the European standard EN 10088-1 Stainless steels. The results show that FEA with von Mises yield criterion and isotropic hardening describe the material behaviour with a good agreement compared to tests and that 5% principal strain limit is too low and 12% is more appropriate.


2016 ◽  
Vol 1138 ◽  
pp. 147-152
Author(s):  
Aurel Valentin Bîrdeanu

The development and implementation into a high number of industrial applications of materials categorized as (Advanced) High Strength Steels (AHSS) due to their high performance per cost ratio is more and more present and this trend is also combined with the development and implementation of new joining technologies and processes, including laser-arc hybrid processes.The paper presents the results of applying Pulsed LASER-(micro)TIG hybrid welding process, for realizing overlap joints for Zn-coated (A)HSS materials in dissimilar configurations, joints that were presented as designed based on UltraLight Steel Auto Body (ULSAB) principles.The influence of main hybrid welding process parameters was investigated in order to establish if one can obtain joints with high values for the shear strength resistance for some of the actually used dissimilar steel combinations based on designs applied throughout ULSAB project and the autos built following these principles.


2014 ◽  
Vol 602-603 ◽  
pp. 536-539
Author(s):  
Hai Bin Sun ◽  
Yu Jun Zhang ◽  
Qi Song Li

High hardness, high strength, high fracture toughness and low density are required for novel bulletproof materials. B4C/SiC composite ceramic is one of the most potential candidates. In this study, B4C/SiC composite ceramic was prepared by reaction sintering. The influence of B4C content, species and content of carbon, sintering temperature on the mechanical properties of B4C/SiC composite ceramic were studied. A high performance B4C/SiC composite ceramic was sintered at 1750°C for 30 min. Phenolic resin and carbon black were both chosen as carbon sources, whose favorable contents were 10wt%, 5wt%, respectively. The density of sintered bodies reduces with B4C content increases. To some extent, fracture toughness, bending strength improve initially and then deteriorate with the increase of B4C content whose optimal amount is 30wt%. The optimal fracture toughness and bending strength of the B4C/SiC composite ceramic are 5.07MPa·m1/2 and 487MPa, respectively. Meanwhile, the Viker-hardness of the sintered body is 30.2GPa, the density is as low as 2.82g/cm3.


2017 ◽  
Vol 898 ◽  
pp. 1177-1182 ◽  
Author(s):  
Y.G. Li ◽  
Y. Sun ◽  
H.L. Huang ◽  
D.Y. Li ◽  
S.C. Ding

Roll forming has been widely used to manufacture constant cross-section products because of high quality, efficiency and low cost. It is quite epidemic in producing automobile parts made of advanced high strength steels (AHSS) nowadays. However, with the development of the vehicle industry and diversity of the products, variable cross-section profiles have attracted more and more attention. The traditional roll forming technique is difficult to meet the requirements. Chain-die forming which was introduced in recent years makes it possible. Chain-die forming is an extension of roll forming and its key characteristic is enlarging the rotation radii of the moulds, by which the deformation zone is extended. The study focused on the finite element simulations of Chain-die forming U profiles with variable cross-section, including variable width and height. The feasibility of Chain-die forming producing variable cross-section products was verified by the perfect simulation results. The advantage of Chain-die forming was that there was no need to design the intermediate moulds except the finished-profile ones, which reduced the mould quantity immensely. Then the cost was lower.


Author(s):  
Rashid Khan ◽  
Tasneem Pervez ◽  
Omar S. Al-Abri ◽  
Majid Al-Maharbi

Advanced high strength steels cover a vast range of applications more specifically in aerospace and oil industry where large deformation of a material is desired in order to attain a specified shape and geometry of the product. The main reason behind their successful implementation is having an optimum combination of strength and formability. Austenite based twinning induced plasticity steel lies in the second generation and has excellent strength-cum-formability combination among the group of advanced high strength steels. The stress assisted phase transformation from austenite to martensite, which is known as twinning, found to be principal reason behind an enhancement of these properties. This work is aimed to investigate an elastic-plastic behavior of an austenite dominated steel, which undergoes slip and mechanical twinning modes of deformation. Initially, a micromechanical model of twining induced plasticity phenomenon is developed using crystal plasticity theory. Then, the developed model is numerically implemented into finite element software ABAQUS through a user-defined material sub-routine. Finally, finite element simulations are done for single and poly-crystal austenite subjected to combined load. This replicates the complex loading condition which exists in material forming processes like pipe expansion, extrusion, rolling. The variation in stress-strain response, magnitude of shear strain, and volume fraction of twinned martensite are plotted and analyzed.


Sign in / Sign up

Export Citation Format

Share Document