Nonlinear Inelastic Buckling Behavior and Residual Strength of H-Section Steel Column

2013 ◽  
Vol 671-674 ◽  
pp. 927-935 ◽  
Author(s):  
Daniel Yeshewawork Abebe ◽  
Jae Hyouk Choi

A nonlinear analytical approach for evaluating the inelastic buckling and residual strength of column member is presented in this study. A steel column member subjected to an axial compression load will shorten in the direction of load. If the load increased until the column buckles, the shortening will stop and the column will suddenly bend or deform laterally and may at the same time twist in a direction perpendicular to its longitudinal axis. However; before final buckling or collapse, steel column member has a tendency of plastic deformation. The issue has been much discussed along with the evaluation of plastic deformation capacity and restoring force of column members in the large deformation range following inelastic post-buckling. In order to predict the inelastic buckling behavior of the member, the load-deformation relationship needs to be identified in the whole process. To verify the accuracy of the nonlinear finite element analysis, compression test on an H-shaped steel column member was carried out and both inelastic deformation and the relationship between load-displacement curves were compared.

2013 ◽  
Vol 405-408 ◽  
pp. 895-899 ◽  
Author(s):  
Daniel Yeshewawork Abebe ◽  
Jin Woo Kim ◽  
Jeong Hyun Jang ◽  
Jae Hyouk Choi

This study presents the effect of slenderness ratio on inelastic buckling behavior and residual strength of H-section steel column member under axial compression loading. Both end pinned H-section steel column constraining rotation on the weak and strong axis was studied. When column members subjected to unexpected compression load (other than design load) will buckle if the applied load exceeds the critical load that induces buckling. To evaluate the effect of slenderness ratio and the influence of constraining rotation in different axis on the structural behavior of H-section steel column member, explicit nonlinear FEM analysis were carried out with reasonable accuracy. To verify the nonlinear finite element analysis, compression test was conducted and both inelastic deformation and the relationship between load-displacement curves were compared. The cumulative energy curve calculated from the load-displacement relationship curve has also been compared and satisfactory result was obtained. From the analysis result the part total energy (the total energy absorbed by the flanges and web) for the two constrain conditions was presented. Furthermore, based on the deflection theory, the relationship between load and displacement was also proposed.


2011 ◽  
Vol 03 (02) ◽  
pp. 385-406 ◽  
Author(s):  
PARAG DATIR ◽  
AVIONE Y. LEE ◽  
SHAWN D. LAMM ◽  
HAI-CHAO HAN

Arteries often demonstrate geometric variations such as elliptic and eccentric cross sections, stenosis, and tapering along the longitudinal axis. Effects of these variations on the mechanical stability of the arterial wall have not been investigated. The objective of this study was to determine the buckling behavior of arteries with elliptic, eccentric, stenotic, and tapered cross sections. The arterial wall was modeled as a homogeneous anisotropic nonlinear material. Finite element analysis was used to simulate the buckling process of these arteries under lumen pressure and axial stretch. Our results demonstrated that arteries with an oval cross section buckled in the short axis direction at lower critical pressures as compared to circular arteries. Eccentric cross sections, stenosis, and tapering also decreased the critical pressure. Stenosis led to dramatic pressure variations along the vessel and reduced the buckling pressure. In addition, tapering shifted the buckling deformation profile of the artery towards the distal end. We conclude that geometric variations reduce the critical pressure of arteries and thus make the arteries more prone to mechanical instability than circular cylindrical arteries. These results improve our understanding of the mechanical behavior of arteries.


2015 ◽  
Vol 15 (2) ◽  
pp. 365-374 ◽  
Author(s):  
Daniel Y. Abebe ◽  
Sijeong Jeong ◽  
Jeonghyun Jang ◽  
Jaehyouk Choi ◽  
Jeong-Ung Park

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2038
Author(s):  
Maria Pia Falaschetti ◽  
Matteo Scafé ◽  
Nicola Zavatta ◽  
Enrico Troiani

Composite materials usage in several industrial fields is now widespread, and this leads to the necessity of overcoming issues that are still currently open. In the aeronautic industry, this is especially true for Barely Visible Impact Damage (BVID) and humidity uptake issues. BVID is the most insidious kind of impact damage, being rather common and not easily detectable. These, along with the ageing that a composite structure could face during its operative life, could be a cause of fatal failures. In this paper, the influence of water absorption on impacted specimens compressive residual strength was studied. Specimens were impacted using a modified Charpy pendulum. Two different locations were chosen for comparison: Near-Edge (NE) and Central (CI). Accelerated hygrothermal ageing was conducted on impacted and reference nonimpacted coupons, placing them in a water-filled jar at 70 °C. Compressive tests were performed in accordance with the Combined Loading Compression (CLC) test method. A Dynamic Mechanical Analysis (DMA) was performed as well. The results showed the influence of hygrothermal ageing, as expected. Nevertheless, the influence of impact location on compressive residual strength is not clearly noticeable in aged specimens, leading to the conclusion that hygrothermal ageing may have a greater effect on composite compressive strength than the analysed BVI damage.


Author(s):  
Xian-Kui Zhu ◽  
Rick Wang

Mechanical dents often occur in transmission pipelines, and are recognized as one of major threats to pipeline integrity because of the potential fatigue failure due to cyclic pressures. With matured in-line-inspection (ILI) technology, mechanical dents can be identified from the ILI runs. Based on ILI measured dent profiles, finite element analysis (FEA) is commonly used to simulate stresses and strains in a dent, and to predict fatigue life of the dented pipeline. However, the dent profile defined by ILI data is a purely geometric shape without residual stresses nor plastic deformation history, and is different from its actual dent that contains residual stresses/strains due to dent creation and re-rounding. As a result, the FEA results of an ILI dent may not represent those of the actual dent, and may lead to inaccurate or incorrect results. To investigate the effect of residual stress or plastic deformation history on mechanics responses and fatigue life of an actual dent, three dent models are considered in this paper: (a) a true dent with residual stresses and dent formation history, (b) a purely geometric dent having the true dent profile with all stress/strain history removed from it, and (c) a purely geometric dent having an ILI defined dent profile with all stress/strain history removed from it. Using a three-dimensional FEA model, those three dents are simulated in the elastic-plastic conditions. The FEA results showed that the two geometric dents determine significantly different stresses and strains in comparison to those in the true dent, and overpredict the fatigue life or burst pressure of the true dent. On this basis, suggestions are made on how to use the ILI data to predict the dent fatigue life.


2013 ◽  
Vol 423-426 ◽  
pp. 2035-2039
Author(s):  
Long Cang Huang ◽  
Yin Ping Cao ◽  
Yang Yu ◽  
Yi Hua Dou

In the process of oil and gas well production, tubing connection stand the axial alternating load during open well, shut well and fluid flow. In order to know premium connection seal ability under the loading, two types of P110 88.9mmx6.45mm premium tubing connections which called A connection and B connection are performed with finite element analysis, in which contact pressures and their the regularities distribution on sealing surface are analyzed. The results show that with the increasing of cycle number, the maximum contact pressures on sealing surface of both A connection and B connection are decreased. The decreasing of the maximum contact pressures on B connection is greater than those on A connection. With the increasing of cycle number of axial alternating compression load, the maximum contact pressure on sealing surface of A connection is decreased, and the maximum contact pressure on sealing surface of B connection remains constant. Compared the result, it shows that the seal ability of A connection is better than B connection under axial alternating tension load, while the seal ability of B connection is better than type A connection under axial alternating compression load.


2011 ◽  
Vol 374-377 ◽  
pp. 2430-2436
Author(s):  
Gang Shi ◽  
Zhao Liu ◽  
Yong Zhang ◽  
Yong Jiu Shi ◽  
Yuan Qing Wang

High strength steel sections have been increasingly used in buildings and bridges, and steel angles have also been widely used in many steel structures, especially in transmission towers and long span trusses. However, high strength steel exhibits mechanical properties that are quite different from ordinary strength steel, and hence, the local buckling behavior of steel equal angle members under axial compression varies with the steel strength. However, there is a lack of research on the relationship of the local buckling behavior of steel equal angle members under axial compression with the steel strength. A finite element model is developed in this paper to analyze the local buckling behavior of steel equal angle members under axial compression, and study its relationship with the steel strength and the width-to-thickness ratio of the angle leg. The finite element analysis (FEA) results are compared with the corresponding design method in the American code AISC 360-05, which provides a reference for the related design.


2008 ◽  
Vol 575-578 ◽  
pp. 174-179
Author(s):  
Juan Hua Su ◽  
Feng Zhang Ren ◽  
Lei Wang

This paper analyzes the forming process methods of fin used in CPU chip to emit heat. The whole process is blanking, the first forging forming, the second forging (sizing), and trimming. The chamfer design of CPU fin blank is simulated by finite element analysis. The optimized chamfer 1.6 mm is available. Semi-enclosed cold forging of progressive dies is put forward. The newly designed transfer unit is applied, which unifies the merit of high efficiency of the progressive dies and the high material-using ratio of the project die. Quick disassembly structure is designed and pins are used as quick disassembly pins by means of ball bearing bushing. The unique processing of the shearing scrap structure is adopted when designing the inverted trimming dies. Compared with the traditional die, the mechanization and electrization are realized to increase the production efficiency and get highly precise CPU fin.


2018 ◽  
Vol 191 ◽  
pp. 00008
Author(s):  
Ikram Feddal ◽  
Abdellatif Khamlichi ◽  
Koutaiba Ameziane

The use of composite stiffened panels is common in several activities such as aerospace, marine and civil engineering. The biggest advantage of the composite materials is their high specific strength and stiffness ratios, coupled with weight reduction compared to conventional materials. However, any structural system may reach its limit and buckle under extreme circumstances by a progressive local failure of components. Moreover, stiffened panels are usually assembled from elementary parts. This affects the geometric as well as the material properties resulting in a considerable sensitivity to buckling phenomenon. In this work, the buckling behavior of a composite stiffened panel made from carbon Epoxy Prepregs is studied by using the finite element analysis under Abaqus software package. Different plies orientations sets were considered. The initial distributed geometric imperfections were modeled by means of the first Euler buckling mode. The nonlinear Riks method of analysis provided by Abaqus was applied. This method enables to predict more consistently unstable geometrically nonlinear induced collapse of a structure by detecting potential limit points during the loading history. It was found that plies orientations of the composite and the presence of geometric imperfections have huge influence on the strength resistance.


Sign in / Sign up

Export Citation Format

Share Document