Study on Fly Ash Based Geopolymer for Coating Applications

2013 ◽  
Vol 686 ◽  
pp. 227-233 ◽  
Author(s):  
Mustafa Al Bakri Abdullah Mohd ◽  
Liyana Jamaludin ◽  
Kamarudin Hussin ◽  
Mohammed Binhussain ◽  
Che Mohd Ruzaidi Ghazali ◽  
...  

Geopolymer is cementitious binders that do not require the presence of ordinary Portland cement (OPC). Fly ash with geopolymer formulations prepared with mixing alumino-silicate with the alkaline activator solution has been applied as protective coating material that suitable for high temperature applications such as fire resistant panel. Geopolymer coating samples were cured at 70 °C for 24 hours before sintered using temperatures range from 600 °C to 1500 °C in order to increase strength and improve thermal properties. Curing conditions also have a significant effect on the development of mechanical strength in most cementitious systems. The chemical compositions, microstructure and FTIR were studied. Geopolymer coating samples cures to a glassy texture and effectively used to create a resistant surface. Fly ash geopolymer coating was improved the compressive strength of the coatings materials as high as 40 MPa. This technology develop a geopolymeric mix design that superior use as cementitious coatings with high thermal application.

2012 ◽  
Vol 626 ◽  
pp. 937-941 ◽  
Author(s):  
W.I. Wan Mastura ◽  
H. Kamarudin ◽  
I. Khairul Nizar ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
H. Mohammed

This paper reports the results of an experimental work conducted to investigate the effect of curing conditions on the properties of fly ash-based geopolymer bricks prepared by using fly ash as base material and combination of sodium hydroxide and sodium silicate as alkaline activator. The experiments were conducted by varying the curing time in the range of 1-24 hours respectively. The specimens cured for a period of 24 hours have presented the highest compressive strength for all ratio of fly ash to sand. For increasing curing time improve compressive strength and decreasing water absorption.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Tanakorn Phoo-ngernkham ◽  
Chattarika Phiangphimai ◽  
Nattapong Damrongwiriyanupap ◽  
Sakonwan Hanjitsuwan ◽  
Jaksada Thumrongvut ◽  
...  

This research focuses on developing a mix design methodology for alkali-activated high-calcium fly ash concrete (AAHFAC). High-calcium fly ash (FA) from the Mae Moh power plant in northern Thailand was used as a starting material. Sodium hydroxide and sodium silicate were used as alkaline activator solutions (AAS). Many parameters, namely, NaOH concentration, alkaline activator solution-to-fly ash (AAS/FA) ratio, and coarse aggregate size, were investigated. The 28-day compressive strength was tested to validate the mix design proposed. The mix design methodology of the proposed AAHFAC mixes was given step by step, and it was modified from ACI standards. Test results showed that the 28-day compressive strength of 15–35 MPa was obtained. After modifying mix design of the AAHFAC mixes by updating the AAS/FA ratio from laboratory experiments, it was found that they met the strength requirement.


2012 ◽  
Vol 476-478 ◽  
pp. 2173-2180 ◽  
Author(s):  
Mohd Mustafa Al Bakri Abdullah ◽  
Kamarudin Hussin ◽  
Mohammed Binhussain ◽  
Ismail Khairul Nizar ◽  
Rafiza Abd Razak ◽  
...  

The compressive strength and microstructural characteristics of fly ash based geopolymer with alkaline activator solution were investigated. The sodium hydroxide and sodium silicate were mixed together to form an alkaline activator. Three parameters including NaOH molarity, mix design (fly ash/alkaline activator ratio and Na2SiO3/NaOH ratio), and curing temperature were examined. The maximum strength of 71 MPa was obtained when the NaOH solution of 12M, fly ash/alkaline activator of 2.0, Na2SiO3/NaOH of 2.5 and curing temperature of 60°C were used at 7th days of testing. The results of SEM indicated that for geopolymer with highest strength, the structure was dense matrix and contains less unreacted fly ash with alkaline activator


2021 ◽  
Vol 309 ◽  
pp. 01058
Author(s):  
V Srinivasa Reddy ◽  
Karnati Vamsi Krishna ◽  
M V Seshagiri Rao ◽  
S Shrihari

In the current study, effect of SiO2/Na2O ratio in Sodium silicate (Na2SiO3) solution, Na2SiO3/NaOH ratio and molarity of NaOH on the compressive strength of geopolymer concrete. A geopolymer mix design is formulated with various mixes are casted with alkali activator solution (AAS) / fly ash (FA) =0.5 and constant fly ash content. The molar ratio of SiO2/Na2O in Na2SiO3 solution is altered from 1.50 to 3.00 for different ratios of Na2SiO3/NaOH (2.0, 2.5 and 3.0) and also for various molarities of NaOH (8M,10M,12M,14M,16M and 18M) are studied for their synergic effect on the compressive strength of geopolymer concrete. Results highlighted that the 16M NaOH yields high compressive strength when SiO2/Na2O in Na2SiO3 solution is around 2.00 to 2.40 and Na2SiO3/NaOH=2.5.


2008 ◽  
Vol 368-372 ◽  
pp. 1529-1531
Author(s):  
Yi Hai Jia ◽  
Min Fang Han ◽  
Ze Sheng Xu ◽  
Yan Gao ◽  
Xian Xian Meng

With fly ash, metakaolin, slag and alkaline activator as raw materials, the geopolymeric ceramic was synthesized and the properties, such as the weight loss, compressive strength and the structures, at high temperatures of 400~1200°C were measured. The weight loss is in the range of 8~13% from 400°C to 800°C. Comparing with the strength at room temperature, the compressive strength of samples is mostly increased at 400°C and all of them increased at 800°C. 9.65~28.32% strength declines at 1200°C. The variation of the compressive strength with temperature is explained based on the analyses of the phases constitutes and the thermal properties of samples.


2010 ◽  
Vol 69 ◽  
pp. 69-74 ◽  
Author(s):  
Ömer Arıöz ◽  
Kadir Kilinç ◽  
Mustafa Tuncan ◽  
Ahmet Tuncan ◽  
Taner Kavas

Geopolymer is a new class of three-dimensionally networked amorphous to semi-crystalline alumino-silicate materials, and first developed by Professor Joseph Davidovits in 1978. Geopolymers can be synthesized by mixing alumino–silicate reactive materials such as kaolin, metakaolin or pozzolans in strong alkaline solutions such as NaOH and KOH and then cured at room temperature. Heat treatment applied at higher temperatures may give better results. Depending on the mixture, the optimum temperature and duration vary 40-100 °C and 2-72 hours, respectively. The properties of geopolymeric paste depend on type of source material (fly ash, metakaolin, kaolin), type of activator (sodium silicate-sodium hydroxide, sodium silicate-potassium hydroxide), amount of activator, heat treatment temperature, and heat treatment duration. In this experimental investigation, geopolymeric bricks were produced by using F-type fly ash, sodium silicate, and sodium hydroxide solution. The bricks were treated at various temperatures for different hours. The compressive strength and density of F-type fly ash based geopolymeric bricks were determined at the ages of 7, 28 and 90 days. Test results have revealed that the compressive strength values of F-type fly ash based geobricks ranged between 5 and 60 MPa. It has been found that the effect of heat treatment temperature and heat treatment duration on the density of F-type fly ash based geobricks was not significant. It should be noted that the spherical particle size increased as the heat treatment temperature increased in the microstructure of F-type fly ash based geobricks treated in oven at the temperature of 60 °C for 24 hours.


2019 ◽  
Vol 967 ◽  
pp. 205-213
Author(s):  
Faiz U.A. Shaikh ◽  
Anwar Hosan

This paper presents the effect of nanosilica (NS) on compressive strength and microstructure of cement paste containing high volume slag and high volume slag-fly ash blend as partial replacement of ordinary Portland cement (OPC). Results show that high volume slag (HVS) cement paste containing 60% slag exhibited about 4% higher compressive strength than control cement paste, while the HVS cement paste containing 70% slag maintained the similar compressive strength to control cement paste. However, about 9% and 37% reduction in compressive strength in HVS cement pastes is observed due to use of 80% and 90% slag, respectively. The high volume slag-fly ash (HVSFA) cement pastes containing total slag and fly ash content of 60% exhibited about 5%-16% higher compressive strength than control cement paste. However, significant reduction in compressive strength is observed in higher slag-fly ash blends with increasing in fly ash contents. Results also show that the addition of 1-4% NS improves the compressive strength of HVS cement paste containing 70% slag by about 9-24%. However, at higher slag contents of 80% and 90% this improvement is even higher e.g. 11-29% and 17-41%, respectively. The NS addition also improves the compressive strength by about 1-59% and 5-21% in high volume slag-fly ash cement pastes containing 21% fly ash+49%slag and 24% fly ash+56%slag, respectively. The thermogravimetric analysis (TGA) results confirm the reduction of calcium hydroxide (CH) in HVS/HVSFA pastes containing NS indicating the formation of additional calcium silicate hydrate (CSH) gels in the system. By combining slag, fly ash and NS in high volumes e.g. 70-80%, the carbon footprint of cement paste is reduced by 66-76% while maintains the similar compressive strength of control cement paste. Keywords: high volume slag, nanosilica, compressive strength, TGA, high volume slag-fly ash blend, CO2 emission.


Sign in / Sign up

Export Citation Format

Share Document