scholarly journals Effect of molarity of sodium hydroxide and molar ratio of alkaline activator solution on the strength development of geopolymer concrete

2021 ◽  
Vol 309 ◽  
pp. 01058
Author(s):  
V Srinivasa Reddy ◽  
Karnati Vamsi Krishna ◽  
M V Seshagiri Rao ◽  
S Shrihari

In the current study, effect of SiO2/Na2O ratio in Sodium silicate (Na2SiO3) solution, Na2SiO3/NaOH ratio and molarity of NaOH on the compressive strength of geopolymer concrete. A geopolymer mix design is formulated with various mixes are casted with alkali activator solution (AAS) / fly ash (FA) =0.5 and constant fly ash content. The molar ratio of SiO2/Na2O in Na2SiO3 solution is altered from 1.50 to 3.00 for different ratios of Na2SiO3/NaOH (2.0, 2.5 and 3.0) and also for various molarities of NaOH (8M,10M,12M,14M,16M and 18M) are studied for their synergic effect on the compressive strength of geopolymer concrete. Results highlighted that the 16M NaOH yields high compressive strength when SiO2/Na2O in Na2SiO3 solution is around 2.00 to 2.40 and Na2SiO3/NaOH=2.5.

2022 ◽  
Vol 955 (1) ◽  
pp. 012010
Author(s):  
A Kustirini ◽  
Antonius ◽  
P Setiyawan

Abstract Geopolymer concrete is concrete that uses environmentally friendly materials, using fly ash from waste materials from the coal industry as a substitute for cement. To produce geopolymer concrete, an alkaline activator is required, with a mixture of Sodium Hydroxide and Sodium Silicate. This research is an experimental study to determine the effect of variations in the concentration of sodium hydroxide (NaOH) 8 Mol, 10 Mol, 12 Mol, and 14 Mol on the compressive strength of geopolymer concrete. Mortar Geopolymer uses a mixture of 1: 3 for the ratio of fly ash and sand, 2.5: 0.45 for the ratio of sodium silicate and sodium hydroxide as an alkaline solution. The specimens used a cube mold having dimension 5 cm x 5 cm x 5 cm, then tested at 7 days and 28 days. The test resulted that concentration of NaOH 12 Mol obtained the maximum compressive strength of geopolymer concrete, that is 38.54 MPa. At concentrations of 12 Mol NaOH and exceeding 12M, the compressive strength of geopolymer concrete decreased.


2012 ◽  
Vol 476-478 ◽  
pp. 2173-2180 ◽  
Author(s):  
Mohd Mustafa Al Bakri Abdullah ◽  
Kamarudin Hussin ◽  
Mohammed Binhussain ◽  
Ismail Khairul Nizar ◽  
Rafiza Abd Razak ◽  
...  

The compressive strength and microstructural characteristics of fly ash based geopolymer with alkaline activator solution were investigated. The sodium hydroxide and sodium silicate were mixed together to form an alkaline activator. Three parameters including NaOH molarity, mix design (fly ash/alkaline activator ratio and Na2SiO3/NaOH ratio), and curing temperature were examined. The maximum strength of 71 MPa was obtained when the NaOH solution of 12M, fly ash/alkaline activator of 2.0, Na2SiO3/NaOH of 2.5 and curing temperature of 60°C were used at 7th days of testing. The results of SEM indicated that for geopolymer with highest strength, the structure was dense matrix and contains less unreacted fly ash with alkaline activator


2021 ◽  
Vol 309 ◽  
pp. 01102
Author(s):  
Nutakki Sai Ketana ◽  
V Srinivasa Reddy ◽  
M V Seshagiri Rao ◽  
S Shrihari

In the present study, effect of various molarities of NaOH, various fly ash content and alkaline activator solution (AAS) / fly ash(FA) ratios on the workability of geopolymer concrete(GPC) are studied along with the effect of use of Na2SiO3/NaOH and K2SiO3/KOH as alkaline activator solutions and various fly ash contents on the compressive strength of geopolymer concrete mixes. Observations shows that both Na2SiO3/NaOH and K2SiO3/KOH gives better performance for different molar, AAS/FA and oxide ratios. Class C GPC has better performance than Class F GPC. It was found that the increase in molarity decreases workability of geopolymer concrete. Also, the workability increases with increase in fly ash (FA) content and AAS/FA ratio in geopolymer concrete. Compressive and split tensile strengths decrease with increase in fly ash content.


Author(s):  
Hongen Zhang ◽  
Lang Li ◽  
Prabir Kumar Sarker ◽  
Tao Long ◽  
Xiaoshuang Shi ◽  
...  

AbstractThis work quantified the hierarchy of the influence of three common mixture design parameters on the compressive strength and the rate of strength increase over the long term of low-calcium fly ash geopolymer concrete (FAGC) through designing 16 mixtures by the orthogonal experimental design (OED) method. The parameters used in the study were liquid to fly ash (L/FA) ratio, sodium hydroxide concentration (SHC) and sodium silicate solution to sodium hydroxide solution (SS/SH) ratio. The L/FA ratio showed little effect on compressive strength when it was varied from 0.40 to 0.52. SHC showed the greatest influence on compressive strength with little impact on the rate of strength increase after the initial heat curing. Even though the SS/SH ratio showed a small effect on the initial compressive strength, it had a considerable influence on the rate of strength increase over the long term. It was found that the compressive strength at 480 days was positively related to the Na2O/SiO2 molar ratio when it was varied from 0.49 to 0.80 and the Si/Al molar ratio was increased up to 1.87. Analysis of the failure types of specimens demonstrated that compressive strength of FAGC was associated with the strength of the mortar–aggregate interface zone (MAIZ).


2020 ◽  
Vol 10 (21) ◽  
pp. 7726
Author(s):  
An Thao Huynh ◽  
Quang Dang Nguyen ◽  
Qui Lieu Xuan ◽  
Bryan Magee ◽  
TaeChoong Chung ◽  
...  

Geopolymer concrete offers a favourable alternative to conventional Portland concrete due to its reduced embodied carbon dioxide (CO2) content. Engineering properties of geopolymer concrete, such as compressive strength, are commonly characterised based on experimental practices requiring large volumes of raw materials, time for sample preparation, and costly equipment. To help address this inefficiency, this study proposes machine learning-assisted numerical methods to predict compressive strength of fly ash-based geopolymer (FAGP) concrete. Methods assessed included artificial neural network (ANN), deep neural network (DNN), and deep residual network (ResNet), based on experimentally collected data. Performance of the proposed approaches were evaluated using various statistical measures including R-squared (R2), root mean square error (RMSE), and mean absolute percentage error (MAPE). Sensitivity analysis was carried out to identify effects of the following six input variables on the compressive strength of FAGP concrete: sodium hydroxide/sodium silicate ratio, fly ash/aggregate ratio, alkali activator/fly ash ratio, concentration of sodium hydroxide, curing time, and temperature. Fly ash/aggregate ratio was found to significantly affect compressive strength of FAGP concrete. Results obtained indicate that the proposed approaches offer reliable methods for FAGP design and optimisation. Of note was ResNet, which demonstrated the highest R2 and lowest RMSE and MAPE values.


2012 ◽  
Vol 626 ◽  
pp. 937-941 ◽  
Author(s):  
W.I. Wan Mastura ◽  
H. Kamarudin ◽  
I. Khairul Nizar ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
H. Mohammed

This paper reports the results of an experimental work conducted to investigate the effect of curing conditions on the properties of fly ash-based geopolymer bricks prepared by using fly ash as base material and combination of sodium hydroxide and sodium silicate as alkaline activator. The experiments were conducted by varying the curing time in the range of 1-24 hours respectively. The specimens cured for a period of 24 hours have presented the highest compressive strength for all ratio of fly ash to sand. For increasing curing time improve compressive strength and decreasing water absorption.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 983 ◽  
Author(s):  
Dong Dao ◽  
Hai-Bang Ly ◽  
Son Trinh ◽  
Tien-Thinh Le ◽  
Binh Pham

Geopolymer concrete (GPC) has been used as a partial replacement of Portland cement concrete (PCC) in various construction applications. In this paper, two artificial intelligence approaches, namely adaptive neuro fuzzy inference (ANFIS) and artificial neural network (ANN), were used to predict the compressive strength of GPC, where coarse and fine waste steel slag were used as aggregates. The prepared mixtures contained fly ash, sodium hydroxide in solid state, sodium silicate solution, coarse and fine steel slag aggregates as well as water, in which four variables (fly ash, sodium hydroxide, sodium silicate solution, and water) were used as input parameters for modeling. A total number of 210 samples were prepared with target-specified compressive strength at standard age of 28 days of 25, 35, and 45 MPa. Such values were obtained and used as targets for the two AI prediction tools. Evaluation of the model’s performance was achieved via criteria such as mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). The results showed that both ANN and ANFIS models have strong potential for predicting the compressive strength of GPC but ANFIS (MAE = 1.655 MPa, RMSE = 2.265 MPa, and R2 = 0.879) is better than ANN (MAE = 1.989 MPa, RMSE = 2.423 MPa, and R2 = 0.851). Sensitivity analysis was then carried out, and it was found that reducing one input parameter could only make a small change to the prediction performance.


2021 ◽  
Vol 30 (3) ◽  
pp. 464-476
Author(s):  
Haider Owaid ◽  
Haider Al-Baghdadi ◽  
Muna Al-Rubaye

Large quantities of paper and wood waste are generated every day, the disposal of these waste products is a problem because it requires huge space for their disposal. The possibility of using these wastes can mitigate the environmental problems related to them. This study presents an investigation on the feasibility of inclusion of waste paper ash (WPA) or wood ash (WA) as replacement materials for fly ash (FA) class F in preparation geopolymer concrete (GC). The developed geopolymer concretes for this study were prepared at replacement ratios of FA by WPA or WA of 25, 50, 75 and 100% in addition to a control mix containing 100% of FA. Sodium hydroxide (NaOH) solutions and sodium silicate (Na2SiO3) are used as alkaline activators with 1M and 10M of sodium hydroxide solution.The geopolymer concretes have been evaluated with respect to the workability, the compressive strength, splitting tensile strength and flexural strength. The results indicated that there were no significant differences in the workability of the control GC mix and the developed GC mixes incorporating WPA or WA. Also, the results showed that, by incorporating of 25–50% PWA or 25% WA, the mechanical properties (compressive strength, splitting tensile strength and flexural strength) of GC mixes slightly decreased. While replacement with 75–100% WPA or with 50–100% WA has reduced these mechanical properties of GC mixes. As a result, there is a feasibility of partial replacement of FA by up to 50% WPA or 25% WA in preparation of the geopolymer concrete.


2017 ◽  
Vol 6 (4) ◽  
pp. 163 ◽  
Author(s):  
Ramesh Babu Chokkalingam ◽  
Ganesan N

Cement consumption is increasing day by day due to the tremendous development in the infrastructure facilities. The production of one ton of cement emits approximately one ton of carbon dioxide to the atmosphere. In order to reduce the use of cement a new-generation concrete has been developed such as geopolymer concrete (GPC).Geopolymer Geopolymer is a new material which has the potential to replace ordinary Portland cement. It is an inorganic material synthesized by alkali activation of amorphous aluminosilicates at ambient or slightly increased temperatures having an amorphous to semi-crystalline polymeric structure. In this study, low calcium flyash from Tuticorin was used to produce geopolymer concrete. The geopolymer was synthesized with sodium silicate and sodium hydroxide solutions. The sodium hydroxide pellets was dissolved in the distilled water to make free from mixing water contaminants. The ratio of sodium silicate and sodium hydroxide ratio was kept as 2.5. The concentration of sodium hydroxide solution is 12 Molarity (12M). Other materials used are locally available coarse aggregate and fine sand in surface dry condition. A polycarboxlate HRWRA La Hypercrete S25was used. Cubes of size 100mm were cast for six mix proportions of 450kg/m3 flyash+0.35W/B, 500 kg/m3 flyash+0.35W/B, 550kg/m3 flyash+0.35W/B, 450kg/m3 flyash+.0.40 W/B, 500kg/m3 fly ash+0.40W/B and 550kg/m3 flyash+0.40W/B. The specimens after casting in moulds were kept in oven at 60°C for 6 hours and left to air dry at room temperature and tested at 7 and 28 days. The test results revealed the compressive strength of 30 Mpa was achieved. There was not much significant difference in strength development at 28 days between the mixes due to the increase of flyash content. The microstructural images at 28 days revealed that there was not much difference in the microstructure due to the variation in flyash content from 450 kg/m3 to 550 kg/m3.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Tanakorn Phoo-ngernkham ◽  
Chattarika Phiangphimai ◽  
Nattapong Damrongwiriyanupap ◽  
Sakonwan Hanjitsuwan ◽  
Jaksada Thumrongvut ◽  
...  

This research focuses on developing a mix design methodology for alkali-activated high-calcium fly ash concrete (AAHFAC). High-calcium fly ash (FA) from the Mae Moh power plant in northern Thailand was used as a starting material. Sodium hydroxide and sodium silicate were used as alkaline activator solutions (AAS). Many parameters, namely, NaOH concentration, alkaline activator solution-to-fly ash (AAS/FA) ratio, and coarse aggregate size, were investigated. The 28-day compressive strength was tested to validate the mix design proposed. The mix design methodology of the proposed AAHFAC mixes was given step by step, and it was modified from ACI standards. Test results showed that the 28-day compressive strength of 15–35 MPa was obtained. After modifying mix design of the AAHFAC mixes by updating the AAS/FA ratio from laboratory experiments, it was found that they met the strength requirement.


Sign in / Sign up

Export Citation Format

Share Document