Physical, Mechanical and Micro-Structural Properties of F Type Fly-Ash Based Geopolymeric Bricks Produced by Pressure Forming Process

2010 ◽  
Vol 69 ◽  
pp. 69-74 ◽  
Author(s):  
Ömer Arıöz ◽  
Kadir Kilinç ◽  
Mustafa Tuncan ◽  
Ahmet Tuncan ◽  
Taner Kavas

Geopolymer is a new class of three-dimensionally networked amorphous to semi-crystalline alumino-silicate materials, and first developed by Professor Joseph Davidovits in 1978. Geopolymers can be synthesized by mixing alumino–silicate reactive materials such as kaolin, metakaolin or pozzolans in strong alkaline solutions such as NaOH and KOH and then cured at room temperature. Heat treatment applied at higher temperatures may give better results. Depending on the mixture, the optimum temperature and duration vary 40-100 °C and 2-72 hours, respectively. The properties of geopolymeric paste depend on type of source material (fly ash, metakaolin, kaolin), type of activator (sodium silicate-sodium hydroxide, sodium silicate-potassium hydroxide), amount of activator, heat treatment temperature, and heat treatment duration. In this experimental investigation, geopolymeric bricks were produced by using F-type fly ash, sodium silicate, and sodium hydroxide solution. The bricks were treated at various temperatures for different hours. The compressive strength and density of F-type fly ash based geopolymeric bricks were determined at the ages of 7, 28 and 90 days. Test results have revealed that the compressive strength values of F-type fly ash based geobricks ranged between 5 and 60 MPa. It has been found that the effect of heat treatment temperature and heat treatment duration on the density of F-type fly ash based geobricks was not significant. It should be noted that the spherical particle size increased as the heat treatment temperature increased in the microstructure of F-type fly ash based geobricks treated in oven at the temperature of 60 °C for 24 hours.

Author(s):  
A. Z. Mohd Ali ◽  
◽  
N. A. Jalaluddin ◽  
N. Zulkiflee ◽  
◽  
...  

The production of ordinary Portland cement (OPC) consumes considerable amount of natural resources, energy and at the same time contribute in high emission of CO2 to the atmosphere. A new material replacing cement as binder called geopolymer is alkali-activated concrete which are made from fly ash, sodium silicate and sodium hydroxide (NaOH). The alkaline solution mixed with fly ash producing alternative binder to OPC binder in concrete named geopolymer paste. In the process, NaOH was fully dissolved in water and cooled to room temperature. This study aims to eliminate this process by using NaOH in solid form together with fly ash before sodium silicate liquid and water poured into the mixture. The amount of NaOH solids were based on 10M concentration. The workability test is in accordance to ASTM C230. Fifty cubic mm of the geopolymer paste were prepared which consists of fly ash to alkaline solution ratio of 1: 0.5 and the curing regime of 80℃ for 24 hours with 100% humidity were implemented. From laboratory test, the workability of dry method geopolymer paste were decreased. The compressive strength of the dry mix of NaOH showed 55% and the workability has dropped to 58.4%, it showed strength reduction compared to the wet mix method.


2012 ◽  
Vol 626 ◽  
pp. 937-941 ◽  
Author(s):  
W.I. Wan Mastura ◽  
H. Kamarudin ◽  
I. Khairul Nizar ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
H. Mohammed

This paper reports the results of an experimental work conducted to investigate the effect of curing conditions on the properties of fly ash-based geopolymer bricks prepared by using fly ash as base material and combination of sodium hydroxide and sodium silicate as alkaline activator. The experiments were conducted by varying the curing time in the range of 1-24 hours respectively. The specimens cured for a period of 24 hours have presented the highest compressive strength for all ratio of fly ash to sand. For increasing curing time improve compressive strength and decreasing water absorption.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 983 ◽  
Author(s):  
Dong Dao ◽  
Hai-Bang Ly ◽  
Son Trinh ◽  
Tien-Thinh Le ◽  
Binh Pham

Geopolymer concrete (GPC) has been used as a partial replacement of Portland cement concrete (PCC) in various construction applications. In this paper, two artificial intelligence approaches, namely adaptive neuro fuzzy inference (ANFIS) and artificial neural network (ANN), were used to predict the compressive strength of GPC, where coarse and fine waste steel slag were used as aggregates. The prepared mixtures contained fly ash, sodium hydroxide in solid state, sodium silicate solution, coarse and fine steel slag aggregates as well as water, in which four variables (fly ash, sodium hydroxide, sodium silicate solution, and water) were used as input parameters for modeling. A total number of 210 samples were prepared with target-specified compressive strength at standard age of 28 days of 25, 35, and 45 MPa. Such values were obtained and used as targets for the two AI prediction tools. Evaluation of the model’s performance was achieved via criteria such as mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). The results showed that both ANN and ANFIS models have strong potential for predicting the compressive strength of GPC but ANFIS (MAE = 1.655 MPa, RMSE = 2.265 MPa, and R2 = 0.879) is better than ANN (MAE = 1.989 MPa, RMSE = 2.423 MPa, and R2 = 0.851). Sensitivity analysis was then carried out, and it was found that reducing one input parameter could only make a small change to the prediction performance.


2016 ◽  
Vol 690 ◽  
pp. 109-113 ◽  
Author(s):  
Sutthima Sriprasertsuk ◽  
Phatthiya Suwannason ◽  
Wanna T. Saengchantara

This work investigated the recycling of fly ash waste and cullet as the raw materials for lightweight bodies produced by heat treatment and using sodium silicate as the binder. Borax was mixed with fly ash and cullet, and put into the block in dimension 10x10x2 cm3. The lightweight materials thus produced were then sintered at temperature of 800 °C. Density, compressive strength and thermal conductivity were determined. Borax showed a positive sintering effect on the porosity of lightweight material during the heat process. The compressive strength of lightweight material diminished with the reduction of density and thermal conductivity. Lightweight material manufactured with borax showed the lower density and thermal conductivity accompanied by the higher compressive strength. The test results indicated that using fly ash and cullet as the raw material with borax could obtain the lightweight material, thus enhancing the possibility of its reuse in a sustainable way.


2021 ◽  
Vol 11 (3) ◽  
pp. 161-170
Author(s):  
Wei-Ting Lin ◽  
Kae-Long Lin ◽  
Kinga Korniejenko ◽  
Lukáš Fiala

This study investigates novel geopolymers by combining Reactive Ultra-fine Fly Ash (RUFA) with 4M sodium hydroxide as an alkali activator. Comparing with general fly ash geopolymers, RUFA geopolymer pastes are characterized in terms of compressive strength, microstructure, and crystalline phases. The RUFA geopolymer is successfully obtained as alumina-silicate bonding materials with the same properties as the general fly ash-based geopolymer. The high compressive strength of the RUFA-based geopolymer samples (13.33 MPa) can be attributed primarily to Ca-based alumino-silicate hydration products and Na-based alumino-silicate complexes. This research  presents an innovative application for geopolymers using RUFA. In the follow-up study, the influence of synthesis and concentration of alkali activator can be considered in RUFA-based geopolymers.


2019 ◽  
Vol 288 ◽  
pp. 51-58
Author(s):  
Gendenjamts Oyun-Erdene ◽  
Jadambaa Temuujin

This paper is focused on the elucidation of mechanical activation effect of circulating fluidized bed combustion fly ash (Amgalan Thermal Station, Mongolia) on mechanical properties of geopolymers. Fluidized bed fly ash was mechanically activated for 15-120 minutes with a vibratory mill. The effect of mechanical activation was quite visible on the particle size reduction and on the degree of amorphization.Geopolymer samples were prepared from the raw and milled fluidized bed fly ashes by alkaline activation. Chemical activation was performed with 10M sodium hydroxide solution, as well as solutions containing a mixture of sodium silicate and sodium hydroxide with a weight ratio of 2:1. The geopolymer cubic specimens were cured at 70°C for 24 hrs and their 7 days uniaxial compressive strength was measured. After curing and drying, the bulk density, water absorption and apparent porosity of geopolymer samples were evaluated.X-ray powder diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetry-differential thermal analysis (TGA-DTA) have been used for the structural characterization of the CFA and the resulting geopolymers. The highest compressive strength of 32.4 MPa was achieved for the fly ash milled for 30 minutes and activated with the solution containing the sodium silicate and 10M sodium hydroxide at a weight ratio of 2:1. Non-milled CFA based geopolymers showed the compressive strength of 16.2 MPa after activation with the same solution. Mechanical activation resulted in an increase in the reactivity of the fluidized bed fly ash and that enhances the geopolymerization reactions.


2014 ◽  
Vol 699 ◽  
pp. 15-19 ◽  
Author(s):  
Rosniza Hanim Abdul Rahim ◽  
Khairun Azizi Azizli ◽  
Zakaria Man ◽  
Muhd Fadhil Nuruddin

Geopolymer is associated with the alkali activation of materials rich in Si and Al, and alkali activator such as sodium hydroxide is used for the dissolution of raw material with the addition of sodium silicate solution to increase the dissolution process. However, the trend of strength development of geopolymer using sodium hydroxide alone is not well established. This paper presents an evaluation on compressive strength of fly ash–based geopolymer by varying curing time with respect to different curing temperature using sodium hydroxide as the only activator. The samples were cured at room temperature and at an elevated temperature (60°C). Further analysis on the microstructure of geopolymer products cured at 60°C was carried out using Field Emission Scanning Microscopy (FESEM). It can be observed that the compressive strength increased as the curing time increased when cured at room temperature; whereas at elevated temperature, the strength increased up to a maximum 65.28 MPa at 14 days but gradually decreased at longer curing time. Better compressive strength can be obtained when the geopolymer was cured at an elevated temperature compared to curing at room temperature.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Xiaomeng Hao ◽  
Qiuyi Wang ◽  
Yihua Wang ◽  
Xin Han ◽  
Chenglong Yuan ◽  
...  

AbstractBamboo is now widely used in construction, papermaking, textile, furniture and other fields because of its renewable, fast-growing, high-strength, high-yield and easy processing. However, compared with wood, bamboo and bamboo products are more vulnerable to damage by fungi and pests. An effective and eco-friendly method is urgently needed to improve their physical and chemical properties, decay resistance and anti-mildew properties, and hydrophobic properties. Here, bamboo was heated with methyl silicone oil. The effect of different temperatures (140 °C–200 °C) and different times (2 h–6 h) on the properties of bamboo was studied systematically, including chemical composition, physical and mechanical properties, surface wettability, decay resistance and anti-mildew property. No starch granules were observed inside the parenchymal cell lumen of bamboo specimen heat treated at 200 °C for 6 h. And with the increase of heat treatment temperature and time, the content of cellulose and hemicellulose decreases gradually while relative content of lignin increases due to its better thermal stability. Accordingly, the surface wettability decreases due to the changes of the surface functional groups and micro-morphologies. Under the condition of oil heat treatment at 160 °C for 2 h, the compressive strength parallel to grain of bamboo samples reach the maximum of 109.52 MPa. With further increase of heating temperature, the corresponding compressive strength decreases. The resulted bending strength and MOE both display similar changing trend. However, the optimal parameter is at 180 °C for 2 h, with the highest bending strength and MOE values of 142.42 MPa and 12,373.00 MPa, respectively. Finally, the decay resistance and anti-mildew property are dramatically enhanced with increased heat treatment temperature and time. All the corresponding changing mechanisms are investigated in depth and in detail. Our results provide comprehensive process parameters and micro-mechanism for the performance of oil heat treatment of bamboo, which can be used to guide the actual production.


2022 ◽  
Vol 955 (1) ◽  
pp. 012010
Author(s):  
A Kustirini ◽  
Antonius ◽  
P Setiyawan

Abstract Geopolymer concrete is concrete that uses environmentally friendly materials, using fly ash from waste materials from the coal industry as a substitute for cement. To produce geopolymer concrete, an alkaline activator is required, with a mixture of Sodium Hydroxide and Sodium Silicate. This research is an experimental study to determine the effect of variations in the concentration of sodium hydroxide (NaOH) 8 Mol, 10 Mol, 12 Mol, and 14 Mol on the compressive strength of geopolymer concrete. Mortar Geopolymer uses a mixture of 1: 3 for the ratio of fly ash and sand, 2.5: 0.45 for the ratio of sodium silicate and sodium hydroxide as an alkaline solution. The specimens used a cube mold having dimension 5 cm x 5 cm x 5 cm, then tested at 7 days and 28 days. The test resulted that concentration of NaOH 12 Mol obtained the maximum compressive strength of geopolymer concrete, that is 38.54 MPa. At concentrations of 12 Mol NaOH and exceeding 12M, the compressive strength of geopolymer concrete decreased.


Sign in / Sign up

Export Citation Format

Share Document