Synthesis of Mesoporous V-TiO2 with Different Surfactants: The Effect of Surfactant Type on Photocatalytic Properties

2013 ◽  
Vol 702 ◽  
pp. 56-61 ◽  
Author(s):  
Rahmatollah Rahimi ◽  
Masoumeh Mahjoub Moghaddas ◽  
Solmaz Zargari ◽  
Rahim Rahimi

Mesoporous vanadium doped titania (V-TiO2) photocatalyst was synthesized with the use of a new surfactant (Gemini) for the first time. In order to investigate the surfactant effect on the photocatalytic activity of catalysts, different surfactants containing Gemini, pluronic F127, pluronic P123, CTAB, Hexadecylamine and PEG 6000 were used in the preparation of mesoporous V-TiO2photocatalyst as a templating agent. The catalysts were characterized by FT-IR, XRD, SEM, EDX, nitrogen adsorption-desorption isotherm, and DRS. The nanosized V-TiO2 with Gemini surfactant (V-TiO2(G)) exhibited the highest visible light driven photocatalytic efficiency for degrading MO dye. The results showed that the surfactant type played an important role on the structure and photocatalytic activity of the samples.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Pham Dinh Du ◽  
Nguyen Trung Hieu ◽  
Tran Vinh Thien

Zeolitic imidazolate framework-8 (ZIF-8) is synthesized quickly at room temperature in methanol with the support of ultrasound. Porous ZnO is also prepared via the thermal treatment of ZIF-8. The photocatalytic activities of the obtained materials are demonstrated via methylene blue (MB) decomposition under UV radiation. The obtained materials are characterized by means of X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherms, UV-Vis diffuse reflectance spectra (DR-UV-Vis), and photoluminescence spectra. The results indicate that ZIF-8 and the materials obtained from ZIF-8 by heating in the air have photocatalytic activity under UV irradiation. The ZnO sample obtained by ZIF-8 calcination at 660°C for 5 h has the highest photocatalytic activity. However, the MB degradation photocatalytic efficiency of the ZnO samples is even lower than that of the ZIF-8 samples, indicating that ZIF-8 is an effective photocatalyst in the treatment of environmental pollution.


2006 ◽  
Vol 45 ◽  
pp. 779-786
Author(s):  
S.J. Hwang ◽  
T.W. Kim

We have synthesized for the first time efficient visible light active photocatalysts of porous MOx-Ti1.83O4 (M = Ni, Cr) heterostructure through an exfoliation-restacking route. XRD, SEM, TEM, and XAS results reveal that the titanate nanosheets and the nanosized metal oxide particles are well ordered in layer-by-layer way. N2 adsorption-desorption isotherm and diffuse UV-vis spectroscopic analyses demonstrate that the present nanohybrids have a large surface area (~190-240 m2/g) and a narrow bandgap (~1.6-2.4 eV), which are ascribable to the formation of porous structure and a coupling of the wide bandgap titanate and the narrow bandgap metal oxide species, respectively. These nanohybrids show an enhanced photocatalytic activity to effectively decompose organic compounds under the irradiation of visible light. The present results highlight that the exfoliation-restacking route can provide a very powerful way of developing novel heterostructured materials with efficient visible light driven photocatalytic activity.


2012 ◽  
Vol 9 (3) ◽  
pp. 1320-1326
Author(s):  
Liang Zhou

A serial of aminophosphonates zirconium with the different arm lengths of –(CH2)n– organic chains (n=2–6) was synthesized for the first time. These compounds are characterized by FT-IR, SEM, TEM, TG and nitrogen adsorption-desorption. And based on the experimental data, these materials not only have layer structure mesoporous and good thermal stability such as zirconium phosphate, but also can be adjusted the layer distance, pore size and pore volume. So aminophosphonates zirconium posses special excellent properties and will have potential prospect applications.


2013 ◽  
Vol 702 ◽  
pp. 51-55
Author(s):  
Rahmatollah Rahimi ◽  
Masoumeh Mahjoub Moghaddas ◽  
Solmaz Zargari

For the first time antimony vanadium oxide-TiO2(SbV-T) nanocomposite was synthesized via sol-gel method to improve the photocatalytic efficiency of TiO2. The samples were characterized by FT-IR, XRD, SEM, EDX, and DRS. To investigate the photocatalytic activity of the samples, the photodegradation of methyl orange was carried out under visible light irradiation with pure TiO2, SbVO4, and SbVO4-TiO2nanocomposite. The SbV-T photocatalyst exhibited higher visible light driven photocatalytic efficiency to degrade MO dye. Furthermore the effect of SbVO4 and cationic vacancies in the photocatalytic activity of the SbV-T sample are described.


2018 ◽  
Vol 9 ◽  
pp. 364-378 ◽  
Author(s):  
Mikhail F Butman ◽  
Nikolay L Ovchinnikov ◽  
Nikita S Karasev ◽  
Nataliya E Kochkina ◽  
Alexander V Agafonov ◽  
...  

We report on a new approach for the synthesis of TiO2-pillared montmorillonite, where the pillars exhibit a high degree of crystallinity (nanocrystals) representing a mixture of anatase and rutile phases. The structures exhibit improved adsorption and photocatalytic activity as a result of hydrothermally activated intercalation of titanium polyhydroxo complexes (i.e., TiCl4 hydrolysis products) in a solution with a concentration close to the sol formation limit. The materials, produced at various annealing temperatures from the intercalated samples, were characterized by infrared spectroscopy, differential scanning calorimetry (DSC)/thermogravimetric analysis (TGA), X-ray diffraction, dynamic light scattering (DLS) measurements, and liquefied nitrogen adsorption/desorption. The photocatalytic activity of the TiO2-pillared materials was studied using the degradation of anionic (methyl orange, MO) and cationic (rhodamine B, RhB) dyes in water under UV irradiation. The combined effect of adsorption and photocatalysis resulted in removal of 100% MO and 97.5% RhB (with an initial concentration of 40 mg/L and a photocatalyst-sorbent concentration of 1 g/L) in about 100 minutes. The produced TiO2-pillared montmorillonite showed increased photocatalytic activity as compared to the commercially available photocatalyst Degussa P25.


RSC Advances ◽  
2015 ◽  
Vol 5 (23) ◽  
pp. 17667-17675 ◽  
Author(s):  
Jian-Wen Shi ◽  
Chang Liu ◽  
Chi He ◽  
Jun Li ◽  
Chong Xie ◽  
...  

C-doped TiO2 nanoplates (CTNP) with exposed {001} facets were synthesized for the first time. The obtained CTNP presented high visible-light photocatalytic activity. A reasonable mechanism of photocatalysis on CTNP under visible light was proposed.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1307
Author(s):  
Guanhao Liu ◽  
Jingyi Yang ◽  
Xinru Xu

β-cyclodextrin derivative intercalated MgAl-hydrotalcites (β-CD-Ca/LDH) was synthesized to convert glycerol into high value-added glycerol carbonate(GC) by transesterification of dimethyl carbonate (DMC) and glycerol in this paper. β-cyclodextrin-metal complexes and β-CD-Ca/LDH was characterized by XRD, FT-IR, SEM, XPS and nitrogen adsorption-desorption. The enrichment of organic reactants in the hydrophobic cavity of β-cyclodextrin improved the collision probability of reactants. The intercalation of β-cyclodextrin-calcium complex (β-CD-Ca) increased the pore size and basic strength of catalyst. The experiment results showed that the glycerol conversion was 93.7% and the GC yield was 91.8% catalyzed by β-CD-Ca/LDH when the molar ratio of DMC and glycerol was 3:1, the catalyst dosage was 4 wt.%, the reaction temperature was 75 °C and the reaction time was 100 min while the glycerol conversion was 49.4% and the GC yield was 48.6% catalyzed by MgAl-LDH under the same conditions.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4722
Author(s):  
Lukáš Žid ◽  
Vladimír Zeleňák ◽  
Miroslav Almáši ◽  
Adriana Zeleňáková ◽  
Jaroslava Szücsová ◽  
...  

In this work we describe the relationship between surface modification of hexagonally ordered mesoporous silica SBA-15 and loading/release characteristics of nonsteroidal anti-inflammatory drug (NSAID) naproxen. Mesoporous silica (MPS) was modified with 3-aminopropyl, phenyl and cyclohexyl groups by grafting method. Naproxen was adsorbed into pores of the prepared MPS from ethanol solution using a solvent evaporation method. The release of the drug was performed in buffer medium at pH 2 and physiological solution at pH 7.4. Parent MPSs as well as naproxen loaded MPSs were characterized using physicochemical techniques such as nitrogen adsorption/desorption, thermogravimetric analysis (TG), Zeta potential analysis, Fourier transform infrared spectroscopy (FT-IR), and elemental analysis. The amount of naproxen released from the MPSs into the medium was determined by high-performance liquid chromatography (HPLC). It was shown that the adsorption and desorption characteristics of naproxen are dependent on the pH of the solution and the surface functionalization of the host.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Nguyen Thi Lan ◽  
Vo Hoang Anh ◽  
Hoang Duc An ◽  
Nguyen Phi Hung ◽  
Dao Ngoc Nhiem ◽  
...  

In this study, C-N-S-tridoped TiO2 composite was fabricated from TiO2 prepared from ilmenite ore and thiourea by means of hydrothermal method. The obtained material was characterized by X-ray diffraction, Raman scattering spectroscopy, UV-Vis diffuse reflectance spectroscopy, nitrogen adsorption-desorption isotherms, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). It was found that C-N-S-tridoped TiO2 material has a large specific surface area, showing good photocatalytic activity on the degradation of antibiotic tetracycline in visible light region. The study on the mechanism of tetracycline photodegradation using the liquid chromatography with mass spectrometry was performed. It was found that tetracycline has been degraded over C-N-S-tridoped TiO2 catalyst into many different intermediates which can eventually be converted into CO2 and H2O. The kinetics of photocatalytic decomposition of tetracycline were investigated. In addition, the obtained material could catalyze well the degradation of other antibiotics (ciprofloxacin and chloramphenicol) and dyes (rhodamine-B, methylene blue, and organe red). The catalyst was stable after five recycles with slight loss of catalytic activity, which indicates great potential for practical application of C-N-S-tridoped TiO2 catalyst in treatment of wastewater containing tetracycline in particular or antibiotics in general.


2013 ◽  
Vol 275-277 ◽  
pp. 1755-1761
Author(s):  
Wei Yin ◽  
Lei Shi ◽  
Dan Hua Zhao ◽  
Xiu Lian Zhang

The precursor was prepared by cohydrolysis reactions of Ti(OC2H5)4and Tb(OC2H5)6around micelles of cetyltrimethylammonium bromide processed by ultrasonic before the cohydrolysis reactions. After calcined the precursor, Terbium doped anatase with a three-dimensionally interconnected hierarchical meso/mesoporous structure had been successfully prepared using an ultrasonic-assisted routine of sol-gel. The three-dimensionally interconnected hierarchical meso/mesoporous structure of the prepared material was proved by high resolution transmission electron microscopy and N2adsorption-desorption analysis. The material prepared displays a pore width distribution curve of single peak at 17.8 nm and displays a range from 6 nm to 42 nm, and possesses a BET area of 105 m2/g and a porosity of 0.65 cm3/g. The results of XPS analysis show that Ti exists in the Ti4+form and Ti-O-Tb/H and Ti-O-Ti bonds exist in the surface of the mesoporous material prepared. The terbium-doped sensitive material prepared possessing a three-dimensionally interconnected hierarchical meso/mesoporous structure is conducive mass-transferring and light-harvesting, and shows that a photocatalytic activity for phenol is about 4.9 times than that of commercial P25 titania under a very weak UV-Vis irradiation condition.


Sign in / Sign up

Export Citation Format

Share Document