Application Research of ARM Embedded System in the Vision System of Chip Mounters

2013 ◽  
Vol 706-708 ◽  
pp. 654-657
Author(s):  
Yong Hui Teng ◽  
De Jian Zhou

Chip mounters are the important equipment on Surface Mounting Technology (SMT) production line, and with continuous improvement of the requirement on the mounting speed and mounting accuracy of micro-electronic components, high-speed and high-precision chip mounters have become important goals pursued by many companies and manufacturers of SMT equipment. As there is great difference in the shape, size, shape and number of pins of the components to be mounted by chip mounters, higher technical requirements on the mounting components identification and visual system must be put forward. The traditional mounter vision system controls and handles the light source system and the image acquisition system by personal computer (PC). However, in the practical application, the visual system has disadvantages such as large volume and high cost, which will lead to the shortcomings of bulky volume of the production equipment, inconvenient assembling, expensive price, difficult upgrading, etc. In this paper, to overcome these deficiencies of mounter vision system, based on the advantages of embedded system such as small size, fast response, reliable operation and relatively low prices, etc., the application of Advanced RISC Machines (ARM) embedded system in SMT machine vision system is researched, and the whole system and the module design is done with the modular design thought, which is conductive to the development and later maintenance, updating, and upgrade of the system.

2012 ◽  
Vol 619 ◽  
pp. 85-89 ◽  
Author(s):  
Wen Hua Li ◽  
Jin Yu Zheng ◽  
Chen Yu

This paper presents a data collection system based on C8051F040 processor and real-time embedded operating system uC/OS-III. The hardware part design, uC/OS-III transplant process and notes, system processes are discussed in detail. This system takes the modular design ideas and reasonable task-assigned strategy, make software is easy to code and modify, realizes real-time, high speed data acquisition.


2020 ◽  
Vol 38 (8A) ◽  
pp. 1187-1199
Author(s):  
Qaed M. Ali ◽  
Mohammed M. Ezzalden

BLDC motors are characterized by electronic commutation, which is performed by using an electric three-phase inverter. The direct control system of the BLDC motor consists of double loops; including the inner-loop for current regulating and outer-loop for speed control. The operation of the current controller requires feedback of motor currents; the conventional current controller uses two current sensors on the ac side of the inverter to measure the currents of two phases, while the third current would be accordingly calculated. These two sensors should have the same characteristics, to achieve balanced current measurements. It should be noted that the sensitivity of these sensors changes with time. In the case of one sensor fails, both of them must be replaced. To overcome this problem, it is preferable to use one sensor instead of two. The proposed control system is based on a deadbeat predictive controller, which is used to regulate the DC current of the BLDC motor. Such a controller can be considered as digital controller mode, which has fast response, high precision and can be easily implemented with microprocessor. The proposed control system has been simulated using Matlab software, and the system is tested at a different operating condition such as low speed and high speed.


Aerospace ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 167
Author(s):  
Bartłomiej Brukarczyk ◽  
Dariusz Nowak ◽  
Piotr Kot ◽  
Tomasz Rogalski ◽  
Paweł Rzucidło

The paper presents automatic control of an aircraft in the longitudinal channel during automatic landing. There are two crucial components of the system presented in the paper: a vision system and an automatic landing system. The vision system processes pictures of dedicated on-ground signs which appear to an on-board video camera to determine a glide path. Image processing algorithms used by the system were implemented into an embedded system and tested under laboratory conditions according to the hardware-in-the-loop method. An output from the vision system was used as one of the input signals to an automatic landing system. The major components are control algorithms based on the fuzzy logic expert system. They were created to imitate pilot actions while landing the aircraft. Both systems were connected with one another for cooperation and to control an aircraft model in a simulation environment. Selected results of tests presenting control efficiency and precision are shown in the final section of the paper.


2021 ◽  
Vol 11 (1) ◽  
pp. 429
Author(s):  
Min-Su Kim ◽  
Youngoo Yang ◽  
Hyungmo Koo ◽  
Hansik Oh

To improve the performance of analog, RF, and digital integrated circuits, the cutting-edge advanced CMOS technology has been widely utilized. We successfully designed and implemented a high-speed and low-power serial-to-parallel (S2P) converter for 5G applications based on the 28 nm CMOS technology. It can update data easily and quickly using the proposed address allocation method. To verify the performances, an embedded system (NI-FPGA) for fast clock generation on the evaluation board level was also used. The proposed S2P converter circuit shows extremely low power consumption of 28.1 uW at 0.91 V with a core die area of 60 × 60 μm2 and operates successfully over a wide clock frequency range from 5 M to 40 MHz.


Author(s):  
A. J. Gannon ◽  
G. V. Hobson ◽  
R. P. Shreeve ◽  
I. J. Villescas

High-speed pressure measurements of a transonic compressor rotor-stator stage and rotor-only configuration during stall and surge are presented. Rotational speed data showed the difference between the rotor-only case and rotor-stator stage. The rotor-only case stalled and remained stalled until the control throttle was opened. In the rotor-stator stage the compressor surged entering a cyclical stalling and then un-stalling pattern. An array of pressure probes was mounted in the case wall over the rotor for both configurations of the machine. The fast response probes were sampled at 196 608 Hz as the rotor was driven into stall. Inspection of the raw data signal allowed the size and speed of the stall cell during its growth to be investigated. Post-processing of the simultaneous signals of the casing pressure showed the development of the stall cell from the point of inception and allowed the structure of the stall cell to be viewed.


2013 ◽  
Vol 437 ◽  
pp. 840-844 ◽  
Author(s):  
Xiao Gang Liu ◽  
Bing Zhao

This paper use the passive vision system through high-speed camera collects molten pool images; and then according to the frequency domain characteristics of the weld pool image Butterworth low-pass filter; gradient method for image enhancement obtained after pretreatment. Research Roberts, Sobel, Prewitt, Log, Zerocross, and Canny 6 both traditional differential operator edge detection processing results. Through comparison and analysis of choosing threshold for [0.1, 0. Canny operator can get the ideal molten pool edge character, for subsequent welding molten pool defect recognition provides favorable conditions.


Author(s):  
Fangyuan Lou ◽  
John C. Fabian ◽  
Nicole L. Key

The inception and evolution of rotating stall in a high-speed centrifugal compressor are characterized during speed transients. Experiments were performed in the Single Stage Centrifugal Compressor (SSCC) facility at Purdue University and include speed transients from sub-idle to full speed at different throttle settings while collecting transient performance data. Results show a substantial difference in the compressor transient performance for accelerations versus decelerations. This difference is associated with the heat transfer between the flow and the hardware. The heat transfer from the hardware to the flow during the decelerations locates the compressor operating condition closer to the surge line and results in a significant reduction in surge margin during decelerations. Additionally, data were acquired from fast-response pressure transducers along the impeller shroud, in the vaneless space, and along the diffuser passages. Two different patterns of flow instabilities, including mild surge and short-length-scale rotating stall, are observed during the decelerations. The instability starts with a small pressure perturbation at the impeller leading edge and quickly develops into a single-lobe rotating stall burst. The stall cell propagates in the direction opposite of impeller rotation at approximately one third of the rotor speed. The rotating stall bursts are observed in both the impeller and diffuser, with the largest magnitudes near the diffuser throat. Furthermore, the flow instability develops into a continuous high frequency stall and remains in the fully developed stall condition.


2020 ◽  
Author(s):  
Pengcheng Wang ◽  
Zenghong Ma ◽  
Xiaoqiang Du ◽  
Wenwu Lu ◽  
Wensong Xing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document