Analysis of Growing Plants in Double Glass Curtain Walls

2013 ◽  
Vol 726-731 ◽  
pp. 4484-4487
Author(s):  
Xiang Dong Xiao ◽  
Li Dong ◽  
Qi Xiang Zhang ◽  
Xiao Dong Liu

Technology of reclaiming condensed water from the thermal channel of double-pane glass curtain wall and applying the reclaimed water in micro-irrigation of natural plants was explored. Selection of plant species for the internal space of double glass curtain wall was studied to meet the ecological technological requirements of double glass curtain wall. Progressive experiment of new technology and simulated calculation of indexes were applied to obtain solar radiation consumption and finally improve indoor and outdoor thermal environment. The results showed that new technologies of applying plants in double glass curtain walls help realize ecological utilization of double glass curtain walls, further reduce energy consumption of buildings.

Buildings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 58
Author(s):  
Sung-Kyung Kim ◽  
Ji-Hye Ryu ◽  
Hyun-Cheol Seo ◽  
Won-Hwa Hong

The thermal comfort of occupants in the increasing number of modern buildings with glass curtain wall structures is of significant research interest. As the thermal sensitivity of building occupants varies with building features, situational factors, and the human body’s thermal balance, it is necessary to derive the comfort temperature based on field research, which was conducted in this study in a South Korean office building with a glass curtain wall structure. The influence of solar radiation on the indoor thermal environment and thermal comfort obtained by measurements and occupant questionnaires was analyzed using cumulative graphs and a sensitivity analysis. The observed changes in operative temperature over time confirmed that occupant comfort was significantly affected by the radiant temperature. Based on this result, two groups (Group A near the windows and Group B near the interior corridor) were defined for analysis. Owing to the influx of solar radiation, Group A was more sensitive to changes in the thermal environment (0.67/°C) than Group B (0.49/°C), and the derived comfort temperature for each group differed from the set temperature by approximately ±2 °C. Thus, it was confirmed that the solar radiation introduced through a glass curtain wall building has a direct impact on the indoor thermal environment and occupant comfort according to location.


MRS Bulletin ◽  
1997 ◽  
Vol 22 (10) ◽  
pp. 5-6
Author(s):  
Horst D. Simon

Recent events in the high-performance computing industry have concerned scientists and the general public regarding a crisis or a lack of leadership in the field. That concern is understandable considering the industry's history from 1993 to 1996. Cray Research, the historic leader in supercomputing technology, was unable to survive financially as an independent company and was acquired by Silicon Graphics. Two ambitious new companies that introduced new technologies in the late 1980s and early 1990s—Thinking Machines and Kendall Square Research—were commercial failures and went out of business. And Intel, which introduced its Paragon supercomputer in 1994, discontinued production only two years later.During the same time frame, scientists who had finished the laborious task of writing scientific codes to run on vector parallel supercomputers learned that those codes would have to be rewritten if they were to run on the next-generation, highly parallel architecture. Scientists who are not yet involved in high-performance computing are understandably hesitant about committing their time and energy to such an apparently unstable enterprise.However, beneath the commercial chaos of the last several years, a technological revolution has been occurring. The good news is that the revolution is over, leading to five to ten years of predictable stability, steady improvements in system performance, and increased productivity for scientific applications. It is time for scientists who were sitting on the fence to jump in and reap the benefits of the new technology.


2021 ◽  
Vol 139 (1) ◽  
pp. 32-58
Author(s):  
Orietta Da Rold

Abstract In this essay, I offer a brief history of manuscript cataloguing and some observations on the innovations this practice introduced especially in the digital form. This history reveals that as the cataloguing of medieval manuscripts developed over time, so did the research needs it served. What was often considered traditional cataloguing practices had to be mediated to accommodate new scholarly advance, posing interesting questions, for example, on what new technologies can bring to this discussion. In the digital age, in particular, how do digital catalogues interact with their analogue counterparts? What skills and training are required of scholars interacting with this new technology? To this end, I will consider the importance of the digital environment to enable a more flexible approach to cataloguing. I will also discuss new insights into digital projects, especially the experience accrued by the The Production and Use of English Manuscripts 1060 to 1220 Project, and then propose that in the future cataloguing should be adaptable and shareable, and make full use of the different approaches to manuscripts generated by collaboration between scholars and librarians or the work of postgraduate students and early career researchers.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3147
Author(s):  
Kiyoung Kim ◽  
Namdoo Kim ◽  
Jongryeol Jeong ◽  
Sunghwan Min ◽  
Horim Yang ◽  
...  

Many leading companies in the automotive industry have been putting tremendous effort into developing new powertrains and technologies to make their products more energy efficient. Evaluating the fuel economy benefit of a new technology in specific powertrain systems is straightforward; and, in an early concept phase, obtaining a projection of energy efficiency benefits from new technologies is extremely useful. However, when carmakers consider new technology or powertrain configurations, they must deal with a trade-off problem involving factors such as energy efficiency and performance, because of the complexities of sizing a vehicle’s powertrain components, which directly affect its energy efficiency and dynamic performance. As powertrains of modern vehicles become more complicated, even more effort is required to design the size of each component. This study presents a component-sizing process based on the forward-looking vehicle simulator “Autonomie” and the optimization algorithm “POUNDERS”; the supervisory control strategy based on Pontryagin’s Minimum Principle (PMP) assures sufficient computational system efficiency. We tested the process by applying it to a single power-split hybrid electric vehicle to determine optimal values of gear ratios and each component size, where we defined the optimization problem as minimizing energy consumption when the vehicle’s dynamic performance is given as a performance constraint. The suggested sizing process will be helpful in determining optimal component sizes for vehicle powertrain to maximize fuel efficiency while dynamic performance is satisfied. Indeed, this process does not require the engineer’s intuition or rules based on heuristics required in the rule-based process.


2021 ◽  
Vol 73 (3) ◽  
pp. 545-589 ◽  
Author(s):  
Helen V. Milner ◽  
Sondre Ulvund Solstad

ABSTRACTDo world politics affect the adoption of new technology? States overwhelmingly rely on technology invented abroad, and their differential intensity of technology use accounts for many of their differences in economic development. Much of the literature on technology adoption focuses on domestic conditions. The authors argue instead that the structure of the international system is critical because it affects the level of competition among states, which in turn affects leaders’ willingness to enact policies that speed technology adoption. Countries adopt new technology as they seek to avoid being vulnerable to attack or coercion by other countries. By systematically examining states’ adoption of technology over the past two hundred years, the authors find that countries adopt new technologies faster when the international system is less concentrated, that changes in systemic concentration have a temporally causal effect on technology adoption, and that government policies to promote technology adoption are related to concerns about rising international competition. A competitive international system is an important incentive for technological change and may underlie global technology waves.


1988 ◽  
Vol 17 (1) ◽  
pp. 2-6
Author(s):  
Patrick Commins ◽  
James V. Higgins

This article examines possible future developments with particular references to the role of new technology and the implications for Europe's agricultural producers. The main proposition is that the maintenance of commercial viability will oblige producers to adopt innovations and new practices, but the most successful will be farmers with the greater economic resources and superior managerial abilities. The outcome will be increasing socio-economic differentiation within the EEC population of agricultural producers and an increasing proportion of farm output coming from the top 20 per cent of farmers in the Community.


2003 ◽  
Vol 2 (2) ◽  
Author(s):  
Fumiko Hayashi ◽  
Elizabeth Klee

Consumers pay for hundreds of goods and services each year, but across households and across goods, consumers do not choose to pay the same way. This paper posits that payment choices depend in part on consumers' propensity to adopt new technologies and in part on the nature of the transaction. To test this hypothesis, this paper analyzes consumer's payment instrument use at the point of sale and for bill payment. The sample includes consumers surveyed in 2001, who are primarily users of the Internet. The results indicate that consumers who use new technology or computers are more likely to use electronic forms of payment, such as debit cards and electronic bill payments. Particularly, the use of direct deposit is a significant predictor of electronic payment use. Furthermore, the results indicate that payment choice depends on the characteristics of the transaction, such as the transaction value, the physical characteristics of the point of sale, and a bill's frequency and value variability.


Author(s):  
V.A. Altunin ◽  
K.V. Altunin ◽  
M.R. Abdullin ◽  
M.R. Chigarev ◽  
I.N. Aliev ◽  
...  

The paper discovers the reasons for the transfer of single-use or reusable ground, air, aerospace, and space-based engines and power plants from liquid hydrocarbon fuels and coolers to gaseous fuels, or rather, to liquefied natural gas methane. The study gives specific examples of creating a new technology and using methane fuel and fuel in the existing units; lists the classes of methane engines and power plants, among which the main ones being piston engines and internal combustion power plants, air-jet engines and power plants, liquid propellant rocket engines and power plants. Findings of research show that it is necessary to experimentally study gaseous methane, so that it could be effectively used in advanced single-use or reusable ground, air, aerospace and space-based engines and power plants, and their features should be taken into account when designing and developing new technologies. The study introduces the results of the experimental study of thermal processes in gaseous methane during its natural convection, describes the experimental base in detail, as well as the procedure for conducting experiments, and develops methods for calculating the heat transfer coefficient to gaseous methane relying on the research results.


Sign in / Sign up

Export Citation Format

Share Document