New Progress in the Investigation of Spatial Distribution for SRTM DEM Errors

2013 ◽  
Vol 726-731 ◽  
pp. 4694-4699
Author(s):  
Zu Rui Ao ◽  
Zhan Qiang Chang ◽  
Xiao Meng Liu ◽  
Qi Yao

The Shuttle Radar Topography Mission (SRTM) is an international research effort that obtains digital elevation models (DEM) over 80% of the Earths land surface. SRTM DEM plays a key role in geosciences and GIS. In order to investigate the vertical accuracy of SRTM DEM, we evaluated the root mean square error (RMSE) of height between SRTM DEM and 1:50,000 scale topographic map within north China, and extracted the related topographic factors including height, slope and aspect. Then, we analyzed the relationship between the topographic factors and SRTM DEM errors. The results show that the SRTM DEM errors not only have a tendency to get larger in areas of large slope and complex topography, but also have a strong correlation with aspect. Furthermore, this correlation appears increasingly strong with great slope.

2019 ◽  
Vol 1 ◽  
pp. 1-2
Author(s):  
Masatoshi Ideto ◽  
Yuki Kurisu ◽  
Hideyuki Toishigawa

<p><strong>Abstract.</strong> Landform of lowland is remains of the natural disasters and the history. Residents of this area are influenced of the landform with history of natural disaster. Therefore, there is an inseparable relationship between topography and social life. At Geospatial Information Authority of Japan (GSI), we are creating Thematic maps which clearly express topographic information. We also create, Thematic maps which distinguish the topography from the formation of the land. New findings can be obtained by considering these thematic maps in combination.</p><p> In this paper, we study the relationship between landform and history of Tokyo by comparing “Digital Elevation Topographic Map” and “Marsh data in the early Meiji Period”. (This early Meiji Period here is the 1880s.)</p>


Author(s):  
Michał Wasilewski ◽  
Jarosław Chormański

The Shuttle Radar Topography Mission Digital Elevation Model as an alternative data source for deriving hydrological characteristics in lowland catchment — Rogożynek catchment case study This paper describes possibility of supplementing digital topography data needed for hydrologic modeling (WetSpa model) of lowland catchment with existing, freely available DEM data obtained from Shuttle Radar Topography Mission launched on February 11th, 2000. Rogożynek basin (Upper Biebrza) as case study is given. Authors compared three DEMs: topographic — TOPO DEM 20 (20 m resolution), radar — SRTM DEM 90 (90 m res.) and resampled radar — SRTM DEM 20 (20 m res.). There were several characteristics compared and analyzed like: relative height differences, slopes, generated river network and generated subwatersheds (subbasins).


2021 ◽  
Vol 9 ◽  
Author(s):  
Liqin Zhou ◽  
Weiming Liu ◽  
Xiaoqing Chen ◽  
Hao Wang ◽  
Xudong Hu ◽  
...  

Mass movements in mountainous areas are capable of damming rivers and can have a lasting effect on the river longitudinal profile. The long profile is commonly used to retrieve regional tectonic information, but how much dams may compromise geomorphometry-based tectonic analysis has not been systematically researched. In this study, we investigate the relationship between river dams and the longitudinal profile of the upper Indus River basin, based on interpretation and analysis of remote sensing imagery and digital elevation models (DEMs) and local field work. We identified 178 landslide, glacier and debris flow dams. Using TopoToolbox, we automatically extracted the river longitudinal profile from the 30 m SRTM DEM, determined the location of convex knickpoints and calculated the channel steepness index. One hundred and two knickpoints were detected with heights above 148 m, of which 55 were related to dams. There is good spatial correspondence between dams, convexities in the river longitudinal profile and relatively high steepness index. Different dam types have different impacts on the river profile; on the upper Indus, debris flow dams have a greater impact than landslide and glacier dams and can form knickpoints of up to 900 m. Therefore, dams may have a significant influence on the river longitudinal profile, knickpoints and steepness index, and should be considered when extracting information on regional tectonics using these indices.


2018 ◽  
Vol 14 (1) ◽  
pp. 235-240 ◽  
Author(s):  
Raghunath Jha

 Digital Terrain Model (DTM) or Digital Elevation Model (DEM) is an important data for Raster Analysis in modern GIS. Its use is extremely important for almost all fields of engineering, especially Water Resources Engineering. In Nepal, high-resolution DTM is not available, and often funds are limited to generate high-resolution DTM using modern day technology such as LiDAR or Aerial Photography. As a result most of the works are based on SRTM DEM which is available free of cost. Presently, 1arc second DTM is available in SRTM for Nepalese Territories. In this study, the applicability of 1arc second or 30m resolution SRTM is checked in comparison with the Department of Survey Digital Topographic Map. It is found that SRTM DEM performs better than DEM generated from Data available with Survey Department.Journal of the Institute of Engineering, 2018, 14(1): 235-240


2009 ◽  
Vol 21 ◽  
pp. 81-84 ◽  
Author(s):  
G. Petersen ◽  
I. Lebed ◽  
N. Fohrer

Abstract. The SRTM DEM, a digital elevation model based on the Shuttle Radar Topography Mission of February 2000 is a source of elevation data with nearly worldwide coverage. It has proven its usefulness in various regions but problems persist for densely vegetated areas where, caused by the organic matter and water content of the vegetation, the radar signal is reflected at some level between the vegetation canopy and the ground level. This level varies with different types and densities of vegetation cover and has so far not been assessed for papyrus areas. The paper describes the approach and establishment of a correction factor for a pilot area in the Sudd swamps of southern Sudan based on comparison of SRTM reference levels and ground control points collected during field surveys between 2004 and 2006. Results show a correction factor between the sensed and the real surface of 4.66 m and a average penetration depth of the radar signal into the dense papyrus vegetation of 0.34 m.


2011 ◽  
Vol 250-253 ◽  
pp. 1236-1242
Author(s):  
Li Heng Liang ◽  
Li Xin Xing ◽  
Tong Lin Li ◽  
Hong Yan Jiang ◽  
Li Jun Jiang

Digital Elevation Models (DEM) implies numbers of geomorphologic spatial information. It not only includes the three-dimensional coordinate but also has unique texture information, which can describe the ‘true’ land surface adequately at relation of neighbors (plan) and relative (amplitude). We will use a method to study the wavelength characters by data mining and distribution of slope and local relief on the altitude steps through a local window. The Shuttle Radar Topography Mission (SRTM) collect detailed Digital Elevation Models(DEM) data between 60°N and 57°S, 80 percent for all land masses, and it provides reliable, high precision surface elevation data for us, suits to analyze efficiently landscape pattern. SRTM-DEM data simulate three-dimensional land surface with regular gridded matrix, and these discrete points are fit for spatial neighbors’ analysis and statistics, and convenient to geomorphologic pattern computation and analysis in digital computer. Geomorphologic pattern is influenced by Physical properties and human activities in a most direct way, but whilst it record numbers of geological evolution evidence, and these records provide some important information for climate change, geological and geographical processes and ecological environment researches in science. In this study, making the whole Jilin province as study object, we propose a fourth-order equation to approximate land as a continuous curved surface, association neighbors’ analysis method, utilize digital elevation matrix to validate an optimal statistic window, and subsequent study the area spatial distribution by parameterization and classification, get a satisfactory effect.


2017 ◽  
Vol 17 (10) ◽  
pp. 1837-1856 ◽  
Author(s):  
Vassiliy Kapitsa ◽  
Maria Shahgedanova ◽  
Horst Machguth ◽  
Igor Severskiy ◽  
Akhmetkal Medeu

Abstract. Changes in the abundance and area of mountain lakes in the Djungarskiy (Jetysu) Alatau between 2002 and 2014 were investigated using Landsat imagery. The number of lakes increased by 6.2 % from 599 to 636 with a growth rate of 0.51 % a−1. The combined areas were 16.26 ± 0.85 to 17.35 ± 0.92 km2 respectively and the overall change was within the uncertainty of measurements. Fifty lakes, whose potential outburst can damage existing infrastructure, were identified. The glacier bed topography version 2 (GlabTop2) model was applied to simulate ice thickness and subglacial topography using glacier outlines for 2000 and SRTM DEM (Shuttle Radar Topography Mission digital elevation model) as input data achieving realistic patterns of ice thickness. A total of 513 overdeepenings in the modelled glacier beds, presenting potential sites for the development of lakes, were identified with a combined area of 14.7 km2. Morphometric parameters of the modelled overdeepenings were close to those of the existing lakes. A comparison of locations of the overdeepenings and newly formed lakes in the areas de-glacierized in 2000–2014 showed that 67 % of the lakes developed at the sites of the overdeepenings. The rates of increase in areas of new lakes correlated with areas of modelled overdeepenings. Locations where hazardous lakes may develop in the future were identified. The GlabTop2 approach is shown to be a useful tool in hazard management providing data on the potential evolution of future lakes.


Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Yulia Ivanova ◽  
Anton Kovalev ◽  
Vlad Soukhovolsky

The paper considers a new approach to modeling the relationship between the increase in woody phytomass in the pine forest and satellite-derived Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) (MODIS/AQUA) data. The developed model combines the phenological and forest growth processes. For the analysis, NDVI and LST (MODIS) satellite data were used together with the measurements of tree-ring widths (TRW). NDVI data contain features of each growing season. The models include parameters of parabolic approximation of NDVI and LST time series transformed using principal component analysis. The study shows that the current rate of TRW is determined by the total values of principal components of the satellite indices over the season and the rate of tree increment in the preceding year.


Sign in / Sign up

Export Citation Format

Share Document