Research on Aerodynamic Characteristics of Air-Cooled Turbine Blade with Conjugate Heat Transfer Method

2013 ◽  
Vol 732-733 ◽  
pp. 270-275
Author(s):  
Jing Jing Zhang ◽  
Lian Fu Wang ◽  
Xiang Jun Fang

In order to improve the performance of aero engines, trying to increase the turbine inlet temperature is an important way. But the turbine inlet temperature of modern aero engines can be more than 2000 K, which is far more than what the materials can bear. So advanced cooling technologies should be introduced to solve this problem. Using the conjugate heat transfer method, this paper researched the aerodynamic characteristics of a certain turbine blade with complex cooling structures. Some conclusions can be drawn: the velocity of the air flow and different distributions of coolant flow for turbine blade with multiple cooling air inlets have great influence on the cooling effect; the cooling effect decreases as the temperature ratio decreases; with the same mass cold gas, the less film cooling holes, the worse cooling effect; therefore, a reasonable air flow distribution plays an important role in obtaining good cooling effect.

2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Mohammad Alizadeh ◽  
Ali Izadi ◽  
Alireza Fathi

Heat transfer parameters are the most critical variables affecting turbine blade life. Therefore, accurately predicting heat transfer parameters is essential. In this study, for precise prediction of the blade temperature distribution, a conjugate heat transfer procedure is used. This procedure involves three different physical aspects: flow and heat transfer in external domain and internal cooling passages and conduction within metal blade. For the external flow simulation and conduction within metal, three-dimensional solvers are used. However, three-dimensional modeling of blade cooling passages is time-consuming because of complex cooling passage geometries. Therefore, in the current work, a one-dimensional network method is used for the simulation of cooling passages. For validation of the numerical procedure, simulation results are compared with the available experimental data for a C3X vane. Results show good agreement against experimental data. The present paper investigates uncertainties of some parameters that affect turbine blade heat transfer, namely, (1) turbine inlet temperature and pressure, (2) upstream stator coolant mass flow rate and temperature, (3) rotor shroud heat transfer coefficient and fluid temperature over shroud, (4) rotor coolant inlet pressure and temperature (as a result of secondary air system), (5) blade metal thermal conductivity, and (6) blade coating thickness and thermal conductivity. Results show that turbine inlet temperature, pressure drop and temperature rise in the secondary air system (SAS) and coating parameters have significant effect on the blade temperature.


Author(s):  
Long-gang Liu ◽  
Chun-wei Gu ◽  
Xiao-dong Ren

Convective cooling channels are applied in a two-dimensional compressor vane to use the intercooling method to improve the efficiency of Brayton cycle and reduce the temperature of the vane. In this paper, we analyze the effect of coolant to the aerodynamic performance and heat transfer performance of the main stream and the vane. For the case of a two-dimensional compressor vane NACA65-(12A2I8b)10, the vane which has five convective cooling channels has been numerically simulated in different test conditions by discontinuous Galerkin (DG) method. The coolant is supercritical carbon dioxide whose pressure is 10MPa. Conjugate heat transfer method has been used in this paper. The numerical simulation result is similar to the experiment data and has been compared with the result of the vane without cooling channels to prove the effect of cooling channels. Cooling channels have large effect on the distribution of temperature and heat transfer coefficient. In addition, the relationship between Nu and Re on the fluid-solid interface has been analyzed and a suitable empirical equation has been obtained. This work analyzes the effect of intercooling system in the compressor and give several advice on future engineering applications in aero engines and gas turbines.


Author(s):  
Akshay Khadse ◽  
Andres Curbelo ◽  
Ladislav Vesely ◽  
Jayanta S. Kapat

Abstract The first stage of turbine in a Brayton cycle faces the maximum temperature in the cycle. This maximum temperature may exceed creep temperature limit or even melting temperature of the blade material. Therefore, it becomes an absolute necessity to implement blade cooling to prevent them from structural damage. Turbine inlet temperatures for oxy-combustion supercritical CO2 (sCO2) are promised to reach blade material limit in near future foreseeing need of turbine blade cooling. Properties of sCO2 and the cycle parameters can make Reynolds number external to blade and external heat transfer coefficient to be significantly higher than those typically experience in regular gas turbines. This necessitates evaluation and rethinking of the internal cooling techniques to be adopted. The purpose of this paper is to investigate conjugate heat transfer effects within a first stage vane cascade of a sCO2 turbine. This study can help understand cooling requirements which include mass flow rate of leakage coolant sCO2 and geometry of cooling channels. Estimations can also be made if the cooling channels alone are enough for blade cooling or there is need for more cooling techniques such as film cooling, impingement cooling and trailing edge cooling. The conjugate heat transfer and aerodynamic analysis of a turbine cascade is carried out using STAR CCM+. The turbine inlet temperature of 1350K and 1775 K is considered for the study considering future potential needs. Thermo-physical properties of this mixture are given as input to the code in form of tables using REFPROP database. The blade material considered is Inconel 718.


Author(s):  
Gongnan Xie ◽  
Bengt Sunde´n

To improve gas turbine performance, the operating temperature has been increased continuously. However, the heat transferred to the turbine blade is substantially increased as the turbine inlet temperature is increased. Cooling methods are therefore needed for the turbine blades to ensure a long durability and safe operation. The blade tip region is exposed to the hot gas flow and is difficult to cool. A common way to cool the tip is to use serpentine passages with 180-deg turn under the blade tip-cap taking advantage of the three-dimensional turning effect and impingement. Increasing internal convective cooling is therefore required to increase the blade tip life. In this paper, augmented heat transfer of a blade tip with internal pin-fins has been investigated numerically using a conjugate heat transfer approach. The computational model consists of a two-pass channel with 180-deg turn and an array of pin-fins mounted on the tip-cap. The computational domain includes the fluid region and the solid pins as well as the solid tip regions. Turbulent convective heat transfer between the fluid and pins, and heat conduction within pins and tip are simultaneously computed. The inlet Reynolds numbers are ranging from 100,000 to 600,000. Details of the 3D fluid flow and heat transfer over the tip surface are presented. A comparison of the overall performance of the two models is presented. It is found that due to the combination of turning impingement and pin-fin cross flow, the heat transfer coefficient of the pin-finned tip is a factor of about 3.0 higher than that of a smooth tip. This augmentation is achieved at the cost of a pressure drop penalty of about 7%. With the conjugate heat transfer method, not only the simulated model is close to the experimental model, but also the distribution of the external tip heat transfer can be relevant for thermal design of turbine blade tips.


Author(s):  
M M Jafari ◽  
G Atefi ◽  
J Khalesi ◽  
A Soleymani

The erosion of the hot regions in a gas turbine is one of the most important challenges encountered by the power plants. Though several numerical simulations of the problem have been reported so far, little is known to give accurate results. In this article, the thermoelastic behaviour of a gas turbine blade with internal steam-cooled channels positioned within a three-dimensional cascade configuration has been studied. A computer code based on the conjugate heat transfer method using the simultaneous solution of Navier–Stokes and heat transfer equations has been developed. From this study, the temperature distribution along with the stress values at high temperatures has been obtained. The blade parameters such as E, α, and K were considered to be a function of the temperature. In the previous works, usually only one or two of these parameters was considered as temperature dependent and the others constant. In this article, all the blade parameters, though making the equations highly non-linear, were considered as a function of temperature. The results have been compared with the available experimental data and a good agreement is observed. According to these findings, taking the temperature dependency of materials into account increases the estimations accuracy and brings the results closer to the reality.


Author(s):  
Christoph Starke ◽  
Erik Janke ◽  
Toma´sˇ Hofer ◽  
Davide Lengani

Recent development in commercial CFD codes offers possibilities to include the solid body in order to perform conjugate heat transfer computations for complex geometries. The current paper aims to analyse the differences between a conjugate heat transfer computation and conventional uncoupled approaches where a heat transfer coefficient is first derived from a flow solution and then taken as boundary condition for a thermal conduction analysis of the solid part. Whereas the thermal analyses are done with a Rolls-Royce in-house finite element code, the CFD as well as the conjugate heat transfer computation are done using the new version 8 of the commercial code Fine Turbo from Numeca International. The analysed geometry is a turbine cascade that was tested by VKI in Brussels within the European FP6 project AITEB 2. First, the paper presents the aerodynamic results. The pure flow solutions are validated against pressure measurements of the cascade test. Then, the heat transfer from flow computations with wall temperature boundary conditions is compared to the measured heat transfer. Once validated, the heat transfer coefficients are used as boundary condition for three uncoupled thermal analyses of the blade to predict its surface temperatures in a steady state. The results are then compared to a conjugate heat transfer method. Therefore, a mesh of the solid blade was added to the validated flow computation. The paper will present and compare the results of conventional uncoupled thermal analyses with different strategies for the wall boundary condition to results of a conjugate heat transfer computation. As it turns out, the global results are similar but especially the over-tip region with its complex geometry and flow structure and where effective cooling is crucial shows remarkable differences because the conjugate heat transfer solution predicts lower blade tip temperatures. This will be explained by the missing coupling between the fluid and the solid domain.


2021 ◽  
pp. 1-20
Author(s):  
Hongyan Bu ◽  
Yufeng Yang ◽  
Liming Song ◽  
Jun Li

Abstract The gas turbine endwall is bearing extreme thermal loads with the rapid increase of turbine inlet temperature. Therefore, the effective cooling of turbine endwalls is of vital importance for the safe operation of turbines. In the design of endwall cooling layouts, numerical simulations based on conjugate heat transfer (CHT) are drawing more attention as the component temperature can be predicted directly. However, the computation cost of high-fidelity CHT analysis can be high and even prohibitive especially when there are many cases to evaluate such as in the design optimization of cooling layout. In this study, we established a multi-fidelity framework in which the data of low-fidelity CHT analysis was incorporated to help the building of a model that predicts the result of high-fidelity simulation. Based upon this framework, multi-fidelity design optimization of a validated numerical turbine endwall model was carried out. The high and low fidelity data were obtained from the computation of fine mesh and coarse mesh respectively. In the optimization, the positions of the film cooling holes were parameterized and controlled by a shape function. With the help of multi-fidelity modeling and sequentially evaluated designs, the cooling performance of the model endwall was improved efficiently.


Author(s):  
Imran Qureshi ◽  
Andy D. Smith ◽  
Kam S. Chana ◽  
Thomas Povey

Detailed experimental measurements have been performed to understand the effects of turbine inlet temperature distortion (hot-streaks) on the heat transfer and aerodynamic characteristics of a full-scale unshrouded high pressure turbine stage at flow conditions that are representative of those found in a modern gas turbine engine. To investigate hot-streak migration, the experimental measurements are complemented by three-dimensional steady and unsteady CFD simulations of the turbine stage. This paper presents the time-averaged measurements and computational predictions of rotor blade surface and rotor casing heat transfer. Experimental measurements obtained with and without inlet temperature distortion are compared. Time-mean experimental measurements of rotor casing static pressure are also presented. CFD simulations have been conducted using the Rolls-Royce code Hydra, and are compared to the experimental results. The test turbine was the unshrouded MT1 turbine, installed in the Turbine Test Facility (previously called Isentropic Light Piston Facility) at QinetiQ, Farnborough UK. This is a short duration transonic facility, which simulates engine representative M, Re, Tu, N/T and Tg /Tw at the turbine inlet. The facility has recently been upgraded to incorporate an advanced second-generation temperature distortion generator, capable of simulating well-defined, aggressive temperature distortion both in the radial and circumferential directions, at the turbine inlet.


2021 ◽  
Author(s):  
Hongyan Bu ◽  
Yufeng Yang ◽  
Liming Song ◽  
Jun Li

Abstract The gas turbine endwall is bearing extreme thermal loads with the rapid increase of turbine inlet temperature. Therefore, the effective cooling of turbine endwalls is of vital importance for the safe operation of turbines. In the design of endwall cooling layouts, numerical simulations based on conjugate heat transfer (CHT) are drawing more attention as the component temperature can be predicted directly. However, the computation cost of high-fidelity CHT analysis can be high and even prohibitive especially when there are many cases to evaluate such as in the design optimization of cooling layout. In this study, we established a multi-fidelity framework in which the data of low-fidelity CHT analysis was incorporated to help the building of a model that predicts the result of high-fidelity simulation. Based upon this framework, multi-fidelity design optimization of a validated numerical turbine endwall model was carried out. The high and low fidelity data were obtained from the computation of fine mesh and coarse mesh respectively. In the optimization, the positions of the film cooling holes were parameterized and controlled by a shape function. With the help of multi-fidelity modeling and sequentially evaluated designs, the cooling performance of the model endwall was improved efficiently.


Sign in / Sign up

Export Citation Format

Share Document