Compressive Strength Properties of Fly Ash-Based Geopolymer Concrete

2013 ◽  
Vol 741 ◽  
pp. 49-54 ◽  
Author(s):  
Gum Sung Ryu ◽  
Gi Hong Ahn ◽  
Kyung Taek Koh ◽  
Jang Hwa Lee

This study intends to investigate experimentally the mechanical characteristics of the compressive strength and elastic modulus of concrete using 3 types of binder that are ordinary Portland cement, fly ash and physically milled fly ash. The test results show that the compressive strength and elastic modulus of the cement-zero concrete reached respectively 30.0 MPa and 19.1 GPa, and indicated that more than 90% of the strength was developed at early age. In addition, a comparison of the geopolymer concrete with ordinary concrete enabled to derive and suggest formulaeexpressing the elastic modulus in function of the compressive strength.

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1651 ◽  
Author(s):  
Yifei Cui ◽  
Kaikai Gao ◽  
Peng Zhang

This paper studies the statistical correlation in mechanical characteristics of class F fly ash based geopolymer concrete (CFGPC). Experimentally measured values of the compressive strength, elastic modulus and indirect tensile strength of CFGPC specimens made from class F fly ash (CFA) were presented and analyzed. The results were compared with those of corresponding ordinary Portland cement concrete (OPCC) using statistical hypothesis tests. Results illustrated that when possessing similar compressive and tensile strength, the elastic modulus for CFGPC is significantly lower than that of OPCC. The corresponding expressions recommended by standards for the case of OPCC is proved to be inaccurate when applied in the case of CFGPC. Statistical regression was used to identify tendencies and correlations within the mechanical characteristics of CFGPC, as well as the empirical equations for predicting tensile strength and elastic modulus of CFGPC from its compressive strength values. In conclusion, CFGPC and OPCC has significant differences in terms of the correlations between mechanical properties. The empirical equations obtained in this study could provide relatively accurate predictions on the mechanical behavior of CFGPC.


2021 ◽  
Vol 11 (7) ◽  
pp. 3032
Author(s):  
Tuan Anh Le ◽  
Sinh Hoang Le ◽  
Thuy Ninh Nguyen ◽  
Khoa Tan Nguyen

The use of fluid catalytic cracking (FCC) by-products as aluminosilicate precursors in geopolymer binders has attracted significant interest from researchers in recent years owing to their high alumina and silica contents. Introduced in this study is the use of geopolymer concrete comprising FCC residue combined with fly ash as the requisite source of aluminosilicate. Fly ash was replaced with various FCC residue contents ranging from 0–100% by mass of binder. Results from standard testing methods showed that geopolymer concrete rheological properties such as yield stress and plastic viscosity as well as mechanical properties including compressive strength, flexural strength, and elastic modulus were affected significantly by the FCC residue content. With alkali liquid to geopolymer solid ratios (AL:GS) of 0.4 and 0.5, a reduction in compressive and flexural strength was observed in the case of geopolymer concrete with increasing FCC residue content. On the contrary, geopolymer concrete with increasing FCC residue content exhibited improved strength with an AL:GS ratio of 0.65. Relationships enabling estimation of geopolymer elastic modulus based on compressive strength were investigated. Scanning electron microscope (SEM) images and X-ray diffraction (XRD) patterns revealed that the final product from the geopolymerization process consisting of FCC residue was similar to fly ash-based geopolymer concrete. These observations highlight the potential of FCC residue as an aluminosilicate source for geopolymer products.


2011 ◽  
Vol 90-93 ◽  
pp. 2188-2192
Author(s):  
Nan Xie ◽  
Jie Ouyang ◽  
Bing Li ◽  
Jing Hui Lu

Abstract. The compressive strength and elastic modulus of early-age shotcrete have important influence on the safety of tunnel during construction period. In order to investigate the laws of the mechanical properties of early-age shotcrete, experiments on the compressive strength and elastic modulus of early-age shotcrete with two different mixes used frequently on construction sites were carried out. The results show that the compressive strength and elastic modulus of shotcrete develop fairly rapidly and especially the development of elastic modulus of shotcrete is faster than that of ordinary concrete. There is an exponential relationship between the compressive strength and time as well as the elastic modulus development and time. Simultaneously their formulas were derived. The research results of this paper are not only helpful to understand the laws of the mechanical properties of early-age shotcrete, but also provide some reference for the reliability analysis of tunnel under construction.


Activated Slag (AAS) and Fly Ash (FA) based geopolymer concrete a new blended alkali-activated concrete that has been progressively studied over the past years because of its environmental benefits superior engineering properties. Geopolymer has many favorable characteristics in comparison to Ordinary Portland Cement. Many base materials could be utilized to make geopolymer with the convenient concentration of activator solution. In this study, the experimental program composed of two phases; phase on divided into four groups; Group one deliberated the effect of sodium hydroxide molarity and different curing condition on compressive strength. Group two studied the effect of alkali activated solution (NaOH and Na2SiO3) content on compressive strength and workability. The effect of sand replacement with slag on compressive strength and workability was explained in group three. Group four studied the effect of slag replacement with several base materials Fly Ash (FA), Ordinary Portland Cement (OPC), pulverized Red Brick (PRB), and Meta Kaolin (MK). Phase two contains three mixtures from phase one which had the highest compressive strength. For each mixture, the fresh concrete test was air content. In addition the hardened concrete tests were the compressive strength at 3, 7, 28, 90, 180, and 365 days, the flexural strength at 28, 90, and 365 days, and the young's modulus at 28, 90, and 365 days. Moreover; the three mixtures were exposed to elevated temperature at 100oC, 300oC, and 600oC to study the effect of elevated temperature on compressive and flexural strength.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6890
Author(s):  
Muhammad Ibraheem ◽  
Faheem Butt ◽  
Rana Muhammad Waqas ◽  
Khadim Hussain ◽  
Rana Faisal Tufail ◽  
...  

The purpose of this research is to study the effects of quarry rock dust (QRD) and steel fibers (SF) inclusion on the fresh, mechanical, and microstructural properties of fly ash (FA) and ground granulated blast furnace slag (SG)-based geopolymer concrete (GPC) exposed to elevated temperatures. Such types of ternary mixes were prepared by blending waste materials from different industries, including QRD, SG, and FA, with alkaline activator solutions. The multiphysical models show that the inclusion of steel fibers and binders can enhance the mechanical properties of GPC. In this study, a total of 18 different mix proportions were designed with different proportions of QRD (0%, 5%, 10%, 15%, and 20%) and steel fibers (0.75% and 1.5%). The slag was replaced by different proportions of QRD in fly ash, and SG-based GPC mixes to study the effect of QRD incorporation. The mechanical properties of specimens, i.e., compressive strength, splitting tensile strength, and flexural strength, were determined by testing cubes, cylinders, and prisms, respectively, at different ages (7, 28, and 56 days). The specimens were also heated up to 800 °C to evaluate the resistance of specimens to elevated temperature in terms of residual compressive strength and weight loss. The test results showed that the mechanical strength of GPC mixes (without steel fibers) increased by 6–11%, with an increase in QRD content up to 15% at the age of 28 days. In contrast, more than 15% of QRD contents resulted in decreasing the mechanical strength properties. Incorporating steel fibers in a fraction of 0.75% by volume increased the compressive, tensile, and flexural strength of GPC mixes by 15%, 23%, and 34%, respectively. However, further addition of steel fibers at 1.5% by volume lowered the mechanical strength properties. The optimal mixture of QRD incorporated FA-SG-based GPC (QFS-GPC) was observed with 15% QRD and 0.75% steel fibers contents considering the performance in workability and mechanical properties. The results also showed that under elevated temperatures up to 800 °C, the weight loss of QFS-GPC specimens persistently increased with a consistent decrease in the residual compressive strength for increasing QRD content and temperature. Furthermore, the microstructure characterization of QRD blended GPC mixes were also carried out by performing scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS).


2013 ◽  
Vol 438-439 ◽  
pp. 15-19
Author(s):  
Chun Jie Liu ◽  
Chun Yan Jia ◽  
Chang Yong Li

Although the machine-made sand was widely used for concrete in recent years in China, it was short of studies on the relations among the basic mechanical properties of fly-ash concrete with machine-made sand (MSFAC). However, these relations such as the compressive strength, the tensile strength and the elastic modulus with the cubic compressive strength (i.e. strength grade) are the basis of design for concrete structures. This paper summarizes the test data from the published references, and discusses the relations among these properties by statistical analyses compared with those of ordinary concrete. The results show that only the tensile strength of MSFAC can be safely forecasted by the same formula of ordinary concrete specified in current Chinese design code. When the strength grade is higher than C45, the axial compressive strength of MSFAC is largely forecasted by the formula of ordinary concrete. The elastic modulus of MSFAC is larger than that of ordinary concrete, which should be prospect by the formula in this paper. This work gives out some cautions for the proper use of the MSFAC in concrete structures.


2015 ◽  
Vol 1113 ◽  
pp. 80-85
Author(s):  
S.M. Nuria ◽  
A.B.A. Rahman ◽  
N.A.K. Hafizah ◽  
Yusof Ahmad ◽  
Azlan Adnan ◽  
...  

This paper studies the effects of binder and filler composition to the strength properties of non-cement polyester grout (NCPG). The binder consisted of unsaturated polyester resin whereas the filler consisted of fine sand and fly ash. The composition of binder-to-filler ratios investigated were 0.43, 0.67, 1, 1.49, and 2.3. The mechanical properties of NCPG were investigated through flowability and compression tests. The test results show that the use of polyester resin combined with fine sand and fly ash produces good quality grout with high flowable rate, rapid setting, self-consolidating and high compressive strength.


2011 ◽  
Vol 311-313 ◽  
pp. 1894-1900 ◽  
Author(s):  
Qing Ye

Based on accelerated carbonation test, the variation of the carbonation resistance of ordinary concrete (C40 grade) with early age wet curing time, clinker and CaO content was studied. Results indicate that the carbonation coefficient and the accelerated carbonation depth of the concrete increased obviously with a reduction in the wet curing time at early ages, the clinker or CaO content in binder and the compressive strength at 28 d age. For example, in conditions of curing schedules with 28, 7, 3, 2 and 1 d wet curing at 20 °C with above 95% RH at early ages and then 0, 21, 25, 26 and 27 d air curing at 20 °C with 60% RH, respectively, carbonation coefficients of the concrete incorporated with 15% fly-ash and 25% slag were 1.83, 2.71, 3.61, 4.67 and 5.50 mm/a0.5 respectively, and thus it can be seen that the calculated times when concrete cover (25 mm) was completely carbonated naturally in now atmosphere (0.04% CO2) were 191, 104, 52, 31 and 20 years respectively. It is possible to predict the potential carbonation coefficient of the concrete from its clinker or CaO content in binder and from its compressive strength at 28 d age in conditions of the certain wet curing time at early ages.


2020 ◽  
Author(s):  
Muhammad Imran Khan ◽  
Muslich Hartadi Sutanto ◽  
Madzlan Bin Napiah ◽  
Salah E. Zoorob

This chapter describes a review of the design and formulation of various cementitious grouts for semi-flexible pavement surfaces. Additionally, the authors also conducted extensive experimental work on the possibility of using a most effective and innovative way of recycling waste polyethylene terephthalate (PET) by exposing to gamma radiation and using as a replacement of Ordinary portland cement in the formulation of cement grouts for semi-flexible pavement surfaces. In the current study, cement in the grouts was replaced with PET (regular and irradiated), fly ash and silica fume and was evaluated for flowability and strength properties. The study concludes that normal PET causes a significant reduction in compressive strength, however, some of the strength is restored when irradiated PET was used. The recycling of waste PET, as a cement replacement in the cementitious grouts for semi-flexible pavement surfaces, with the irradiation process can be doubled as compared to utilizing normal/regular PET.


Sign in / Sign up

Export Citation Format

Share Document