Chemical Properties of Substituted and Blended Cements

2013 ◽  
Vol 749 ◽  
pp. 477-482 ◽  
Author(s):  
Mehmet Serkan Kirgiz

The aim of the experimental study is to determine chemical properties of substituted and blended cement contained marble and brick powders to provide efficacy for the economical and the environmental aspect. Marble and brick powders, CEM I 42.5N cement and clinker were used as materials in the study. Substituted cements were prepared with the addition of cement for marble or brick powder at the ratios of % 6, 20, 21, 35. Blended cements were mixed the addition of cement clinker for marble or brick powder at the ratios of % 6, 20, 21, 35. And CEM I 42.5N cements were also chosen as Reference cement. Results show that marble and brick powders can prevalently add as substitute or blend materials to cement to prevent it detrimental chemicals like alkali-silica reaction.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Mehmet Serkan Kirgiz

Effects of chemical compositions changes of blended-cement pastes (BCPCCC) on some strength gains of blended cement mortars (BCMSG) were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC) were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP) or 6%, 20%, 21%, and 35% brick powder (BP) for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min). Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC) and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS) and flexural strengths (FS) of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2), sodium oxide (Na2O), and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2) at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM) in comparison with reference mortars (RM) at whole cure days as MP up to 6% or BP up to 35% was blended for cement.


2020 ◽  
Vol 30 (3) ◽  
pp. 201-213
Author(s):  
Ghania Nigri ◽  
Yacine Cherait ◽  
Soraya Nigri

Abstract This research work discusses both the physical and durability characteristics of newly blended cement containing waste crushed brick. This waste is used as a partial substitution for clinker in cement. Thus, blended cements are obtained by grinding and homogenizing clinker, waste brick, and gypsum. Four compositions containing 0%, 10%, 20%, and 30% of waste materials were prepared and submitted to various characterization tests. The introduction of brick powder improved the physical characteristics, therefore; it improved the mechanical properties and durability performance of the new cement compared to the reference, prepared with 0% addition. More particularly, it resisted sulfuric acid (H2SO4) attack after fixation of portlandite by pozzolan.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1609
Author(s):  
Rohollah Rostami ◽  
Agnieszka J. Klemm ◽  
Fernando C. R. Almeida

Supplementary cementitious materials (SCMs), such as fly ash (FA) and ground granulated blast-furnace slag (GGBS), are often used as a partial replacement of cements to improve the sustainability of Portland cement-based materials and reduce their environmental impact. Superabsorbent polymers (SAPs) can be successfully used as internal curing agents in ultra-high performance cementitious materials by facilitating the hydration process and controlling the water supply in both fresh and hardened states. This paper intends to characterise the physical and chemical properties of SAPs and their sorption properties in different blended cement environments. The swelling capacity and kinetics of absorption of three superabsorbent polymers with different chemical compositions and grading were tested in different cement environments. Experimental results of their sorption performance in distinct solutions, including deionised water (DI), Portland cement (PC), and blended cements (PC-FA and PC-GGBS) and changes in pH of different solutions over time were investigated. The results showed that PC-FA solution had the lowest pH followed by PC-GGBS solution. Moreover, SAPs samples displayed the highest absorption capacities in PC-FA solutions, and the lowest swelling capacities were found in PC-GGBS solutions. Furthermore, SAP with smaller particle sizes had the greatest absorption capacity values in all solutions.


2020 ◽  
Vol 10 (1) ◽  
pp. 49
Author(s):  
Suharto Suharto ◽  
Muhammad Amin ◽  
Muhammad Al Muttaqii ◽  
Syafriadi Syafriadi ◽  
Kiki Nurwanti

Experimental study on the use of basalt stone originated from Lampung has been conducted to evaluate its potential for a partial substitute of raw material in production of cement clinker. The basalt stone contains minerals of anorthite, augite, and albite phases that are required for clinker formation. In this study, the main raw materials were 80% limestone, 10% silica sand, 9% clay and 1% iron sand. The raw material in these experiments were mixtures 90% or 80% of the main raw material and 10% or 20% of basalt stone. The effect of adding coal to raw materials was also studied to see the possibility of an increase in clinkerization temperature inside the raw material mixture, and at the same time to see the effect of coal ash on clinker composition. Clinker obtained from heating of raw materials at a temperature of 1100oC had LSF of 94.1% and 95.1% (heating time of 1 and 3 hours). If heating is carried out at 1200oC, the clinker had LSF of 97.7% and 98.0% (heating time of 2 and 3 hours, respectively). Depending on the temperature and duration of heating, the clinker mostly had SM in the range of 2.18-2.40% , and AM in the range of 0,78-1.80%. Characterization using XRD showed that the clinker consisted of larnite and gehlenite phases, and dominated by CaO.Batu basalt Lampung telah diuji potensinya sebagai pengganti sebagian bahan baku utama pembuatan klinker semen. Batu basalt tersebut memiliki mineral-mineral dalam fase anorthite, augite, dan albite yang diperlukan pada pembentukan klinker. Pada penelitian ini, bahan baku utama adalah batu kapur 80%, pasir silika 10%, tanah liat 9% dan pasir besi 1%. Campuran bahan baku klinker adalah 90% atau 80% bahan baku utama dan 10% atau 20% batu basalt. Efek penambahan batubara ke dalam bahan baku klinker juga dipelajari untuk melihat kemungkinan kenaikan temperatur klinkerisasi di dalam campuran bahan baku, dan sekaligus untuk melihat efek abu batubara terhadap komposisi klinker. Klinker hasil pemanasan bahan baku pada temperatur 1100oC memiliki LSF 94,1% dan 95,1% (lama pemanasan 1 dan 3 jam). Jika pemanasan dilakukan pada 1200oC, klinker memilik LSF 97,7% dan 98,00% (lama pemanasan 2 dan 3 jam). Tergantung pada temperatur dan lama pemanasan, klinker hasil percobaan ini umumnya memiliki SM 2,18-2,40%, dan AM antara 0,78-1,80%. Karakterisasi dengan XRD menunjukkan bahwa klinker terdiri dari fase larnite dan gehlenite, dan didominasi CaO.


2020 ◽  
Vol 30 (1) ◽  
pp. 54-63
Author(s):  
Willy Mbasha ◽  
Rainer Haldenwang ◽  
Irina Masalova

AbstractNatural gypsum can degenerate into hemihydrate during cement clinker grinding which changes the physical and chemical properties of cement hydration, affecting therefore the fresh and hardened properties of cement based materials. Cement systems containing a constant total amount of calcium sulfate (4%) with relative proportions of hemihydrate and natural gypsum were considered. Rheological measurements were executed on an Anton Paar MCR51 rheometer to evaluate the flow properties of cement pastes. Results show that, the yield stress and the plastic viscosity of cement pastes were affected when the degeneration of natural gypsum exceeded 50%. Above this concentration, the yield stress remarkably increased and a variation in plastic viscosity of about 50% was observed. Using TG-DSC techniques, it was shown that, the amount of formed ettringite could not explain these rheological changes. However, centrifugational packing and SEM-SE measurements confirmed that, more than the amount of ettringite precipitated, ettringite morphology plays a major role in controlling the yield stress and plastic viscosity of fresh cement pastes.


2019 ◽  
Vol 57 (3A) ◽  
pp. 128
Author(s):  
Dung Ta Ngoc ◽  
Canh Nguyen Hoang ◽  
Mai Pham Thanh

The substitution of 5% cement clinker by 5% gypsum or 5% limestone additive as well as the fineness of limestone was studied about its effects on the strength of cement. The study show that the gypsum additive of 5% increase the strength of cement at the time of 1, 3, 7, 28 days (R= 55.1 MPa of cement with 5% substituted additive comparable to R= 45.3 MPa of cement with 100% clinker at the time of 28 days). The limestone additive of 5% increase the strength of cement at the early time of 1, 3, 7 days (R= 46.0 MPa of cement with 5% limestone additive comparable to R= 31.6 MPa of cement with 100% clinker at the time of 7 days). As well as, the strength of cement increase when the fineness of limestone increase.


1986 ◽  
Vol 86 ◽  
Author(s):  
Micheline Regourd

ABSTRACTThe hydration of a blended cement through hydraulic or pozzolanic reactions results in heterogeneous polyphase materials. Because portland cement clinker is the major component in most cement blends, the microstructural development of portland cement hydrates, including C-S-H and pore structures, is first discussed. Slag, fly ash, silica fume and limestone filler cements are then compared to portland cement with regards to C-S-H morphology and composition, aluminate crystallization, cement paste interfaces and pore size distribution.


Sign in / Sign up

Export Citation Format

Share Document