Autonomous Navigation System Based on GPS for Agricultural Vehicles

2013 ◽  
Vol 774-776 ◽  
pp. 1404-1408
Author(s):  
Jian Jun Zhou ◽  
Xiu Wang ◽  
Xiao Fang Wang ◽  
Gang Liu ◽  
Su Li

The development of a fuzzy navigation controller for wheeltype agricultural vehicles with mechanism steering system was presented. The fuzzy controller was designed based on heading angle error and cross track error. The incremental PID control method was used for front wheels turning control. Simulation was done based on two wheels vehicle model. Automatic navigation control system was also developed,which was made up of the upper computer and the lower controller part. The upper computer was a flat industrial computer, and the lower controller was developed by ARM7. The experiments were done in the Xiaotangshan National Demonstration Base for Precision Agriculture. The cross track error of line track using this system was less than 0.12m, and the average cross track error was 0.04m.

2021 ◽  
pp. 265-274
Author(s):  
Zhenguo Zhang ◽  
Jin He ◽  
Hongwen Li ◽  
Qingjie Wang ◽  
Wenchao Yang ◽  
...  

Automatic navigation system for agricultural vehicles have become a widely used technology in precision agriculture over the last few decades. More and more sophisticated tractor control systems, however, revealed that exact positioning of the actual implement is equally or even more important. Based on literature sources and patent databases, the aim of this review is to introduce implement guidance systems and describe its current application in agricultural implement. Agricultural implement guidance is an essential technology for autonomous vehicle operations. In addition, applications and new technologies associated with navigation sensors on passive and active implement guidance are analyzed. Finally, challenges and future perspectives of agricultural implement systems are summarized and forecasted. This study can enrich the application of automatic navigation sensors on agricultural implements and provide a reference for the application of automatic navigation on more field operations.


2018 ◽  
Vol 173 ◽  
pp. 02009
Author(s):  
Lu Xing-Hua ◽  
Huang Peng-Fen ◽  
Huang Wei-Peng

The bionic machine leg is disturbed by the joint during the walking process, which is easy to produce time delay, which causes the robustness of the control of the machine leg is not good. In order to improve the robustness of the bionic gait control of the machine leg, a robust control method for the bionic gait of the machine leg based on time - delay feedback is proposed. The gait correlation parameters of robot leg are collected by sensor array, and the dynamic model of bionic gait is constructed. The fuzzy controller of bionic gait of robot leg is constructed by using time-delay coupling control method. The delayed feedback control error compensation method of machine leg correction is taken to improve the steady control performance of the robotic leg, reduce the steady-state error, improve the robustness of the control machine leg. The simulation results show that this method is robust to the bionic gait control of the machine leg. The output error of the gait parameter can quickly converge to zero, and the accurate estimation of the attitude parameter is stronger.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4181 ◽  
Author(s):  
Chun-Hui Lin ◽  
Shyh-Hau Wang ◽  
Cheng-Jian Lin

In this paper, a navigation method is proposed for cooperative load-carrying mobile robots. The behavior mode manager is used efficaciously in the navigation control method to switch between two behavior modes, wall-following mode (WFM) and goal-oriented mode (GOM), according to various environmental conditions. Additionally, an interval type-2 neural fuzzy controller based on dynamic group artificial bee colony (DGABC) is proposed in this paper. Reinforcement learning was used to develop the WFM adaptively. First, a single robot is trained to learn the WFM. Then, this control method is implemented for cooperative load-carrying mobile robots. In WFM learning, the proposed DGABC performs better than the original artificial bee colony algorithm and other improved algorithms. Furthermore, the results of cooperative load-carrying navigation control tests demonstrate that the proposed cooperative load-carrying method and the navigation method can enable the robots to carry the task item to the goal and complete the navigation mission efficiently.


2014 ◽  
Vol 556-562 ◽  
pp. 1472-1475 ◽  
Author(s):  
Bing Dong ◽  
Yan Tao Tian ◽  
Chang Jiu Zhou

This thesis puts forward one optimal adaptive fuzzy control method based on the pure electric vehicle energy management system of the fuzzy control which has been founded already. By adding an optimizing researching model based on the conventional fuzzy control strategy, the thesis can pick up the valuable control rules based on the dynamic programming theory and also can adjust the parameter of the fuzzy controller automatically according to the system operating. These can make the sum of the energy loss reduce to the min. The experiment points out that this method makes the vehicle possess good economic performance in the same driving cycle.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3263 ◽  
Author(s):  
Gul Tchoketch Kebir ◽  
Cherif Larbes ◽  
Adrian Ilinca ◽  
Thameur Obeidi ◽  
Selma Tchoketch Kebir

The Maximum Power Point Tracking (MPPT) strategy is commonly used to maximize the produced power from photovoltaic generators. In this paper, we proposed a control method with a fuzzy logic approach that offers significantly high performance to get a maximum power output tracking, which entails a maximum speed of power achievement, a good stability, and a high robustness. We use a fuzzy controller, which is based on a special choice of a combination of inputs and outputs. The choice of inputs and outputs, as well as fuzzy rules, was based on the principles of mathematical analysis of the derived functions (slope) for the purpose of finding the optimum. Also, we have proved that we can achieve the best results and answers from the system photovoltaic (PV) with the simplest fuzzy model possible by using only 3 sets of linguistic variables to decompose the membership functions of the inputs and outputs of the fuzzy controller. We compare this powerful controller with conventional perturb and observe (P&O) controllers. Then, we make use of a Matlab-Simulink® model to simulate the behavior of the PV generator and power converter, voltage, and current, using both the P&O and our fuzzy logic-based controller. Relative performances are analyzed and compared under different scenarios for fixed or varied climatic conditions.


2020 ◽  
Vol 9 (4) ◽  
pp. 1711-1717
Author(s):  
Ayman Abu Baker ◽  
Yazeed Yasin Ghadi

This paper presents an ongoing effort to control a mobile robot in unstructured environment. Obstacle avoidance is an important task in the field of robotics, since the goal of autonomous robot is to reach the destination without collision. Several algorithms have been proposed for obstacle avoidance, having drawbacks and benefits. In this paper, the fuzzy controller is used to tackle the problem of mobile robot autonomous navigation in unstructured environment. The objective is to make the robot move along a collision free trajectory until it reaches its target. The proposed approach uses the fuzzified, adaptive inference engine and defuzzification engine. Also number of linguistic labels is optimized for the input of the mobile robot in order to reduce computational time for real-time applications. The proposed fuzzy controller is evaluated subjectively and objectively with other approaches and also the processing time is taken in consideration.


2014 ◽  
Vol 556-562 ◽  
pp. 2270-2273
Author(s):  
Hua Cai Lu ◽  
Juan Ti ◽  
Yi Ming Yuan ◽  
Li Sheng Wei

In this paper, a new sensorless control method is proposed for a permanent magnet linear synchronous motor based on Fuzzy sliding mode observer, which combines the advantages of sliding mode observer and Fuzzy controller respectively. The difference between the current estimated value and the actual current value is regarded as sliding mode function; sliding mode function (current error) and variation of the error are used as the input of fuzzy controller, and the width of the boundary layer as the output, adjusting the width of the boundary layer dynamically in real time. The simulation results show that Fuzzy sliding mode observer is able to find a balance between soft chattering and steady-state error, keep the system robustness and control precision.


Author(s):  
M. Roopaei ◽  
M. J. Zolghadri ◽  
B. S. Ranjbar ◽  
S. H. Mousavi ◽  
H. Adloo ◽  
...  

In this chapter, three methods for synchronizing of two chaotic gyros in the presence of uncertainties, external disturbances and dead-zone nonlinearity are studied. In the first method, there is dead-zone nonlinearity in the control input, which limits the performance of accurate control methods. The effects of this nonlinearity will be attenuated using a fuzzy parameter approximator integrated with sliding mode control method. In order to overcome the synchronization problem for a class of unknown nonlinear chaotic gyros a robust adaptive fuzzy sliding mode control scheme is proposed in the second method. In the last method, two different gyro systems have been considered and a fuzzy controller is proposed to eliminate chattering phenomena during the reaching phase of sliding mode control. Simulation results are also provided to illustrate the effectiveness of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document