scholarly journals RESEARCH PROGRESS OF AGRICULTURAL IMPLEMENT GUIDANCE SYSTEMS. A REVIEW

2021 ◽  
pp. 265-274
Author(s):  
Zhenguo Zhang ◽  
Jin He ◽  
Hongwen Li ◽  
Qingjie Wang ◽  
Wenchao Yang ◽  
...  

Automatic navigation system for agricultural vehicles have become a widely used technology in precision agriculture over the last few decades. More and more sophisticated tractor control systems, however, revealed that exact positioning of the actual implement is equally or even more important. Based on literature sources and patent databases, the aim of this review is to introduce implement guidance systems and describe its current application in agricultural implement. Agricultural implement guidance is an essential technology for autonomous vehicle operations. In addition, applications and new technologies associated with navigation sensors on passive and active implement guidance are analyzed. Finally, challenges and future perspectives of agricultural implement systems are summarized and forecasted. This study can enrich the application of automatic navigation sensors on agricultural implements and provide a reference for the application of automatic navigation on more field operations.

2013 ◽  
Vol 774-776 ◽  
pp. 1404-1408
Author(s):  
Jian Jun Zhou ◽  
Xiu Wang ◽  
Xiao Fang Wang ◽  
Gang Liu ◽  
Su Li

The development of a fuzzy navigation controller for wheeltype agricultural vehicles with mechanism steering system was presented. The fuzzy controller was designed based on heading angle error and cross track error. The incremental PID control method was used for front wheels turning control. Simulation was done based on two wheels vehicle model. Automatic navigation control system was also developed,which was made up of the upper computer and the lower controller part. The upper computer was a flat industrial computer, and the lower controller was developed by ARM7. The experiments were done in the Xiaotangshan National Demonstration Base for Precision Agriculture. The cross track error of line track using this system was less than 0.12m, and the average cross track error was 0.04m.


2020 ◽  
pp. 637-656 ◽  
Author(s):  
Marco Medici ◽  
Søren Marcus Pedersen ◽  
Giacomo Carli ◽  
Maria Rita Tagliaventi

The purpose of this study is to analyse the environmental benefits of precision agriculture technology adoption obtained from the mitigation of negative environmental impacts of agricultural inputs in modern farming. Our literature review of the environmental benefits related to the adoption of precision agriculture solutions is aimed at raising farmers' and other stakeholders' awareness of the actual environmental impacts from this set of new technologies. Existing studies were categorised according to the environmental impacts of different agricultural activities: nitrogen application, lime application, pesticide application, manure application and herbicide application. Our findings highlighted the effects of the reduction of input application rates and the consequent impacts on climate, soil, water and biodiversity. Policy makers can benefit from the outcomes of this study developing an understanding of the environmental impact of precision agriculture in order to promote and support initiatives aimed at fostering sustainable agriculture.


2019 ◽  
Vol 65 (5) ◽  
pp. 664-671
Author(s):  
Ilya Pyatnitskiy ◽  
O. Puchkova ◽  
Viktor Gombolevskiy ◽  
Lyudmila Nizovtsova ◽  
Natalya Vetsheva ◽  
...  

The article presents a literature review of the PubMed database and the Cochrane library, aimed at analyzing the current situation and problems in the field of breast cancer screening in the world and Russia to form an idea of the key elements in organizing an effective screening program in the Russian healthcare system, as well as the possibilities of using new technologies when organizing such programs.


2020 ◽  
Vol 9 (1) ◽  
pp. 303-322 ◽  
Author(s):  
Zhifang Zhao ◽  
Tianqi Qi ◽  
Wei Zhou ◽  
David Hui ◽  
Cong Xiao ◽  
...  

AbstractThe behavior of cement-based materials is manipulated by chemical and physical processes at the nanolevel. Therefore, the application of nanomaterials in civil engineering to develop nano-modified cement-based materials is a promising research. In recent decades, a large number of researchers have tried to improve the properties of cement-based materials by employing various nanomaterials and to characterize the mechanism of nano-strengthening. In this study, the state of the art progress of nano-modified cement-based materials is systematically reviewed and summarized. First, this study reviews the basic properties and dispersion methods of nanomaterials commonly used in cement-based materials, including carbon nanotubes, carbon nanofibers, graphene, graphene oxide, nano-silica, nano-calcium carbonate, nano-calcium silicate hydrate, etc. Then the research progress on nano-engineered cementitious composites is reviewed from the view of accelerating cement hydration, reinforcing mechanical properties, and improving durability. In addition, the market and applications of nanomaterials for cement-based materials are briefly discussed, and the cost is creatively summarized through market survey. Finally, this study also summarizes the existing problems in current research and provides future perspectives accordingly.


2020 ◽  
Vol 1706 ◽  
pp. 012090
Author(s):  
S Vivek ◽  
B Varsha ◽  
S Tarun Vignesh ◽  
K Anirudh ◽  
K P Peeyush

2021 ◽  
Vol 11 (8) ◽  
pp. 3368
Author(s):  
Liping Wang ◽  
Jianshe Ma ◽  
Ping Su ◽  
Jianwei Huang

High-resolution pixel LED headlamps are lighting devices that can produce high-resolution light distribution to adapt to road and traffic conditions, intelligently illuminate traffic areas, and assist drivers. Due to the complexity of roads and traffic conditions, the functional diversity of high-resolution pixel LEDs headlamps and traffic safety has come into question and is the subject of in-depth research conducted by car manufacturers and regulators. We summarize the current possible functions of high-resolution pixel LED headlamps and analyze ways in which they could be improved. This paper also discusses the prospect of new technologies in the future.


Author(s):  
Rafael Delpiano

There is growing interest in understanding the lateral dimension of traffic. This trend has been motivated by the detection of phenomena unexplained by traditional models and the emergence of new technologies. Previous attempts to address this dimension have focused on lane-changing and non-lane-based traffic. The literature on vehicles keeping their lanes has generally been limited to simple statistics on vehicle position while models assume vehicles stay perfectly centered. Previously the author developed a two-dimensional traffic model aiming to capture such behavior qualitatively. Still pending is a deeper, more accurate comprehension and modeling of the relationships between variables in both axes. The present paper is based on the Next Generation SIMulation (NGSIM) datasets. It was found that lateral position is highly dependent on the longitudinal position, a phenomenon consistent with data capture from multiple cameras. A methodology is proposed to alleviate this problem. It was also discovered that the standard deviation of lateral velocity grows with longitudinal velocity and that the average lateral position varies with longitudinal velocity by up to 8 cm, possibly reflecting greater caution in overtaking. Random walk models were proposed and calibrated to reproduce some of the characteristics measured. It was determined that drivers’ response is much more sensitive to the lateral velocity than to position. These results provide a basis for further advances in understanding the lateral dimension. It is hoped that such comprehension will facilitate the design of autonomous vehicle algorithms that are friendlier to both passengers and the occupants of surrounding vehicles.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Andrea Scribante ◽  
Pekka K. Vallittu ◽  
Mutlu Özcan ◽  
Lippo V. J. Lassila ◽  
Paola Gandini ◽  
...  

The reinforcement of resins with short or long fibers has multiple applications in various engineering and biomedical fields. The use of fiber reinforced composites (FRCs) in dentistry has been described in the literature from more than 40 years. In vitro studies evaluated mechanical properties such as flexural strength, fatigue resistance, fracture strength, layer thickness, bacterial adhesion, bonding characteristics with long fibers, woven fibers, and FRC posts. Also, multiple clinical applications such as replacement of missing teeth by resin-bonded adhesive fixed dental prostheses of various kinds, reinforcement elements of dentures or pontics, and direct construction of posts and cores have been investigated. In orthodontics, FRCs have been used also for active and passive orthodontic applications, such as anchorage units, en-masse movement units, and postorthodontic tooth retention. FRCs have been extensively tested in the literature, but today the advances in new technologies involving the introduction of nanofillers or new fibers along with understanding the design principles of FRC devices open new fields of research for these materials both in vitro and in vivo. The present review describes past and present applications of FRCs and introduces some future perspectives on the use of these materials.


Sign in / Sign up

Export Citation Format

Share Document