Research of Organic/Inorganic Chromium-Free Co-Passivation Treatments for Galvanized Steel

2013 ◽  
Vol 785-786 ◽  
pp. 881-886
Author(s):  
Qi Pan ◽  
Lin Wu ◽  
De Lian Yi ◽  
Zhao Hui ◽  
Ou Yang ◽  
...  

The corrosion resistance of chromium-free passivation film with single chromate-free passivation solution to deal with galvanized steel still has a gap compared to chromate passivation. In this experiment, the passivation solution consisting of the inorganic salt as corrosion inhibitor, silane as sealer, water-based epoxy resin and additives which formed a layer of inorganic and organic composite passivation film on galvanized steel through the synergistic effect between inorganic and organic. The morphology and elements of the passivation film was analyzed by scanning electron microscopy (SEM) and the corrosion resistance of the composite film was tested by neutral salt spray test (NSS), lead acetate spot test (ASS), tafel polarization curves and AC impedance spectroscopy (EIS). The results show that the composite film has a good adhesion and an excellent corrosion resistance, the corrosion area is only 3% after 72h NSS.

2012 ◽  
Vol 445 ◽  
pp. 661-666 ◽  
Author(s):  
A. Azimi ◽  
F. Shahriari ◽  
F. Ashrafizadeh ◽  
M.R. Toroghinezhad ◽  
J. Jamshidi

Production of defect-free galvanized steel sheet is considered a major concern for automotive and other critical applications; nevertheless, the occurrence of some defects in the coated sheets is unavoidable. In order to alleviate the problem, we need to know the extent to which the properties of a galvanized sheet are influenced by the presence of a given defect. In this investigation, specimens including any of the two major defects of continuously galvanized steel sheets were selected from a large number of coated samples. The defects, including furnace roll pimples and bare spots, were microstructurally characterized and their influence on corrosion behaviour and mechanical properties of the steel sheet was evaluated. Corrosion resistance was examined via standard salt spray test and Tafel polarization. Tensile test was employed as a measure of mechanical properties of the defective galvanized sheets. The results indicated that the presence of defects had little influence on the tensile properties of the samples, but considerably reduced their corrosion resistance. Based on the results of salt spray tests, pimples reduced corrosion resistance of galvanized sheets 23 % (50 hours) on average and bare spot defects caused reduction in corrosion resistance up to 39%.


2011 ◽  
Vol 399-401 ◽  
pp. 1972-1975 ◽  
Author(s):  
Hui Min Zhang ◽  
Lin Wu ◽  
Zhao Hui Ouyang ◽  
De Lian Yi ◽  
Qiao Hua ◽  
...  

In this paper, an organic/inorganic molybdenum series Cr-free coating was formed on galvanized steel by simple immersion and its corrosion behavior was compared to that of a typical chromate coating. Molybdate and 1-Hydroxy-ethylidene-1, 1-diphosphonic acid (HEDP) were used as corrosion inhibitor, as well as acrylic resin and silane were used as film-former and coupling agents, respectively. The corrosion behavior of the coatings was evaluated by Neutral salt spray (NSS), Electrochemical impedance spectroscopy (EIS) and Tafel polarization. The surface topography of the samples was observed by Scanning Electron Microscopy (SEM). The results indicated that the corroded area of the Mo-HEDP treatment was only corroded 2% after 72 h spraying, while the corrosion behaviour of Mo-HEDP was closed to that of Cr pretreatment due to the synergistic reaction of molybdate and HEDP. Compared with the film of Cr treatment, Mo-HEDP passivating coating was more environmentally friendly.


2014 ◽  
Vol 525 ◽  
pp. 31-34
Author(s):  
Xiao Feng Liu

By way of chemical marinate method, carrying out rare earth lanthanum to corrosion protect galvanized steel. The process of rare earth lanthanum conversion coating for galvanized steel was studied by using orthogonal experiment to get the optimized passivation parameters when the concentration of La (NO3) is 30g/L, H2O2is 20ml/L, pH=4 and was passivated at 40°C for 30s. The corrosion resistance was examined by weight loss tests, neutral salt spray tests (NSS) and electrochemical impedance spectroscopy (EIS). The results showed that the corrosion impedance of the pretreated sample was significantly improved, the corrosion rate was decreased by one order of magnitude, and the anti-white rust time was 54h.


2014 ◽  
Vol 20 (3) ◽  
pp. 165-170 ◽  
Author(s):  
Amirreza Bakhtiari

In this work three surface treatments such as: polishing, sand-blast and polishedoxidized have been carried out on the hot-dip galvanized coatings. The roughness and corrosion resistance of coatings have been studied. Surface morphology of coatings has evaluated by scanning electron microscope (SEM). Corrosion behavior was analyzed by salt spray cabinet test and Tafel extrapolation test. The results showed that the sample under sand-blasted treatment exhibited the highest roughness number. Tafel polarization and salt spray cabinet tests reveal the sample with great roughness number have weak corrosion resistance. Difference observed in corrosion behaviour can be explained by difference in surface roughness.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6547
Author(s):  
Izabela Kunce ◽  
Agnieszka Królikowska ◽  
Leszek Komorowski

Powder coatings are widely applied for corrosion protection of steel, aluminum, and hot dip galvanized steel in a variety of corrosive environments. Powder coatings are subjected to a number of strict laboratory tests to determine their mechanical properties, corrosion resistance, and color stability. Among European quality certificates for powder coatings applied to galvanized steel, the most commonly recognized are GSB-ST and Qualisteelcoat certificates, which also refer to the EN 13438 standard. Certificates of quality for powder coatings are constantly updated according to the latest research results and experience of specialists operating in the field of corrosion protection. This paper presents an experimental evaluation of how the required length of selected accelerated corrosion tests can affect the final assessment of powder coatings. On the example of two powder painting systems: polyester as well as based on epoxy and polyester resins, the paper presents the influence of the time of accelerated corrosion tests: ISO 6270, ISO 9227 (Neutral Salt Spray and Acetic Acid Salt Spray), and ISO 3231 on the protective properties of the coatings. The results of damage assessment according to ISO 4628 have been correlated with the requirements of particular quality specifications. Additionally, based on FTIR (Fourier Transform Infrared Spectroscopy) and EIS (Electrochemical Impedance Spectroscopy) analyses, the influence of the applied corrosion tests on the degradation degree of the coatings studied has been presented. The paper aims to present a tests for those powder coating systems applied to facilities for which the main requirement is corrosion resistance rather than aesthetics.


2011 ◽  
Vol 383-390 ◽  
pp. 3081-3085
Author(s):  
Yu Bao Cao

The corrosion resistance of blackishgreen passivation films on zinc-plated steel sheet was studied by polarization curve measurement, electrochemical impedance spectroscopy and neutral salt spray test. The passivated sample featured a more positive corrosion potential and much lower corrosion current density as compared to non-passivated sample in 5% (mass fraction) NaCl solution. The Nyquist plots of the samples with and without passivation were characterized as two complete capacitive arcs, indicating that the corrosion is controlled by electrochemical process. The radii of capacitive arcs of the passivated sample are larger than those of non-passivated sample, because the passivation film formed on the sample surface increases the reaction resistance in corrosion process, thus the corrosion resistance of the sample is improved. The anti-white rust time of the passivation film in neutral salt spray test is 400 h.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 337
Author(s):  
Ewa Wierzbicka ◽  
Marta Mohedano ◽  
Endzhe Matykina ◽  
Raul Arrabal

REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) regulations demand for an expedient discovery of a Cr(VI)-free alternative corrosion protection for light alloys even though the green alternatives might never be as cheap as current harmful technologies. In the present work, flash- plasma electrolytic oxidation coatings (FPEO) with the process duration < 90 s are developed on AZ31B alloy in varied mixtures of silicate-, phosphate-, aluminate-, and fluoride-based alkaline electrolytes implementing current density and voltage limits. The overall evaluation of the coatings’ anticorrosion performance (electrochemical impedance spectroscopy (EIS), neutral salt spray test (NSST), paintability) shows that from nine optimized FPEO recipes, two (based on phosphate, fluoride, and aluminate or silicate mixtures) are found to be an adequate substitute for commercially used Cr(VI)-based conversion coating (CCC). The FPEO coatings with the best corrosion resistance consume a very low amount of energy (~1 kW h m−2 µm−1). It is also found that the lower the energy consumption of the FPEO process, the better the corrosion resistance of the resultant coating. The superb corrosion protection and a solid environmentally friendly outlook of PEO-based corrosion protection technology may facilitate the economic justification for industrial end-users of the current-consuming process as a replacement of the electroless CCC process.


2019 ◽  
Vol 66 (5) ◽  
pp. 595-602
Author(s):  
Zhifeng Lin ◽  
Likun Xu ◽  
Xiangbo Li ◽  
Li Wang ◽  
Weimin Guo ◽  
...  

Purpose The purpose of this paper is to examine the performance of a fastener composite coating system, sherardized (SD) coating/zinc-aluminum (ZA) coating whether it has good performance in marine environment. Design/methodology/approach In this paper, SD coating was fabricated on fastener surface by solid-diffusion method. ZA coating was fabricated by thermal sintering method. Corrosion behaviours of the composite coating were investigated with potentiodynamic polarization curves, open circuit potential and electrochemical impedance spectroscopy methods. Findings Neutral salt spray (NSS) and deep sea exposure tests revealed that the composite coating had excellent corrosion resistance. Polarization curve tests showed that corrosion current density of the sample with composite coating was significantly decreased, indicating an effective corrosion protection of the composite coating. OCP measurement of the sample in NaCl solution demonstrated that the composite coating had the best cathodic protection effect. The good corrosion resistance of the composite coating was obtained by the synergy of SD and ZA coating. Practical implications SD/ZA coating can be used in marine environment to prolong the life of carbon steel fastener. Social implications SD/ZA composite coating can reduce the risk and accident caused by failed fastener, avoid huge economic losses. Originality/value A new kind of composite coating was explored to protect the carbon steel fastener in marine environment. And the composite coating has the long-term anti-corrosion performance both in simulated and marine environment test.


2020 ◽  
Vol 984 ◽  
pp. 43-50
Author(s):  
Hua Yuan Zhang ◽  
Can Wang ◽  
Bing Xue ◽  
Jing Luo

To improve the corrosion resistance on Q235 low carbon steel, in this paper, tetraethyl orthosilicate (TEOS), N-dodecyl trimethoxysilane and γ-(2,3-epoxypropoxy) propytrimethoxysilane (KH560) were used to make organic-inorganic hybrid sol-gel film. Cross cut test adhesion method, neutral salt spray test, electrochemical test and film protective efficiency were taken to value the corrosion resistance property. The corrosion topography was studied by optical microscope. In addition, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) curves and equivalent electric circuit fitting were used to analyze the corrosion mechanism. The cross cut adhesion of sol-gel film can reach 1 class and the protection class can attain 5 class after 72 hours neutral salt spray test. According to the potentiodynamic polarization curve analysis, the corrosion potential of sol-gel film coating sample after 0.5 hours immersion was -0.46 V (vs. SCE) on the 0.1 Hz, and its corrosion current density was 4.74×10-7 A·cm-2. The corrosion potential of bare Q235 low carbon steel plate after 0.5 hours immersion was -0.78 V (vs. SCE) on the 0.1 Hz, and its corrosion current density was 4.75×10-6 A·cm-2. The impedance value on 0.1 Hz (|Z|0.1Hz) (1.27×106 Ω·cm2) of sol-gel film coating sample was more than three orders of magnitude higher than the value of the low carbon steel plate. Even dipping in 3.5 wt. % NaCl for 72 hours, the |Z|0.1Hz value of sol-gel coating sample was still one order of magnitude higher than the low carbon steel plate with 0.5 hours immersion. Sol-gel film with excellent adhesion can significantly improve the corrosion resistance of low carbon steel plate. Sol-gel film can increase the protection efficiency of low carbon steel plate by 90%.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3788
Author(s):  
Henryk Kania ◽  
Mariola Saternus ◽  
Jan Kudláček

The paper presents results of studies on the impact of bismuth and tin additions to the Zn-AlNi bath on microstructure and corrosion resistance of hot dip galvanizig coatings. The structure at high magnifications on the top surface and cross-section of coatings received in the Zn-AlNiBiSn bath was revealed and the microanalysis EDS (energy dispersion spectroscopy) of chemical composition was determined. The corrosion resistance of the coatings was tested relatively in a neutral salt spray test (NSS), and tests in a humid atmosphere containing SO2. Electrochemical parameters of coatings corrosion were determined. It was found that Zn-AlNiBiSn coatings show lower corrosion resistance in comparison with the coatings received in the Zn-AlNi bath without Sn and Bi alloying additions. Structural research has shown the existence of precipitations of Sn-Bi alloy in the coating. It was found that Sn-Bi precipitations have more electropositive potential in relation to zinc, which promotes the formation of additional corrosion cells.


Sign in / Sign up

Export Citation Format

Share Document