Rolling Processes and Performance of Cu-Fe In Situ Composites

2009 ◽  
Vol 79-82 ◽  
pp. 159-162
Author(s):  
Jun Qing Guo ◽  
He Yang ◽  
Ping Liu ◽  
Shu Guo Jia ◽  
Li Ming Bi ◽  
...  

The deformation processed Cu-based in-situ composite was a kind of structural function materials with high physical and mechanical performance and used widely in large scale integrated circuit. Especially, the sheet material of Cu-Fe in-situ composites was interested to researchers because the Fe was cheaper and the use of sheets was more widely in electron industry. In this study, the sheets of Cu-10Fe-1Ag in-situ composite were achieved by cold rolling which the thickness was from 6mm to 2.56mm, 1.28mm, 0.64mm and 0.32mm. Corresponding, the rolling ratio was 4.9, 5.3, 5.9 and 6.6. The maximum strength was 722Mpa at the rolling ratio 4.9. The conductivity was measured also with maximum 59.5% IACS. The experimental results show that the tensile strength and electrical resistance increase with the increasing of rolling strain. Although the conductivity of Cu-Fe in-situ composites was not very high, the matching of strength and conductivity was favorable. It is feasible that the high performance Cu-based in-situ composite can be obtained by cold rolling with merits of materials cheaper, melting simple and usage wide

2007 ◽  
Vol 336-338 ◽  
pp. 1406-1408 ◽  
Author(s):  
Xiao Hui Zhi ◽  
Jian Dong Xing ◽  
Yi Min Gao ◽  
Xiao Jun Wu ◽  
Xiao Le Cheng

In the present study, a Fe-Cr-C hypereutectic alloy was prepared from industry-grade materials and subjected to modification and fluctuation, through which new types of particle reinforced composites, hypereutectic in-situ composite, was generated. The structures of the composite modified or not with the range of fluctuation addition from 0% to 2.8wt.%, were investigated. The primary carbides were refined with the addition of modifying agents and fluctuations. Increasing the amount of fluctuation resulted in finer primary carbides. At 1380oC, with the addition of modifying agents and 2.8wt.% fluctuation addition, the structure was well modified.


2020 ◽  
Author(s):  
Sebastian Friedemann ◽  
Bruno Raffin ◽  
Basile Hector ◽  
Jean-Martial Cohard

<p>In situ and in transit computing is an effective way to place postprocessing and preprocessing tasks for large scale simulations on the high performance computing platform. The resulting proximity between the execution of preprocessing, simulation and postprocessing permits to lower I/O by bypassing slow and energy inefficient persistent storages. This permits to scale workflows consisting of heterogeneous components such as simulation, data analysis and visualization, to modern massively parallel high performance platforms. Reordering the workflow components gives a manifold of new advanced data processing possibilities for research. Thus in situ and in transit computing are vital for advances in the domain of geoscientific simulation which relies on the increasing amount of sensor and simulation data available.</p><p>In this talk, different in situ and in transit workflows, especially those that are useful in the field of geoscientific simulation, are discussed. Furthermore our experiences augmenting ParFlow-CLM, a physically based, state-of-the-art, fully coupled water transfer model for the critical zone, with FlowVR, an in situ framework with a strict component paradigm, are presented.<br>This allows shadowed in situ file writing, in situ online steering and in situ visualization.</p><p>In situ frameworks further can be coupled to data assimilation tools.<br>In the on going EoCoE-II we propose to embed data assimilation codes into an in transit computing environment. This is expected to enable ensemble based data assimilation on continental scale hydrological simulations with multiple thousands of ensemble members.</p>


2001 ◽  
Vol 61 (7) ◽  
pp. 971-975 ◽  
Author(s):  
Chang-Ming Chen ◽  
L.T. Zhang ◽  
W.C. Zhou ◽  
Z.Z. Hao ◽  
Y.J. Jiang ◽  
...  

2020 ◽  
Vol 2 (8) ◽  
pp. 3358-3366
Author(s):  
Man Zhou ◽  
Zhihang Jin ◽  
Lifang Su ◽  
Kai Li ◽  
Hong Zhao ◽  
...  

Flexible Ni(OH)2/Cu(OH)2@Ni–Cu–P alloy coated on cotton fabric with high conductivity and excellent mechanical performance is available for future smart and wearable electronic devices.


Author(s):  
J. V. Maskowitz ◽  
W. E. Rhoden ◽  
D. R. Kitchen ◽  
R. E. Omlor ◽  
P. F. Lloyd

The existence of electromigration in thin films has been acknowledged since the early sixties. Electromigration is described as the main transport for atoms in a conductor under a current stress. Initial interest had been of a theoretical nature as electromigration had little impact on circuit reliability. With the maturing of Very Large Scale Integrated Circuit (VLSI) technology, current densities are exceeding 106 Amps/cm2 while linestripes are reaching into the submicron range. In this environment, electromigration can cause unwanted open or short circuits in thin films. This has serious implications on the reliability of any integrated circuit. By 1990, millions of transistors may be fabricated on a chip with feature sizes smaller than the wavelength of visible light.


2010 ◽  
Vol 168-170 ◽  
pp. 889-894
Author(s):  
Jun Zhao ◽  
Zhi Wang ◽  
Han Zhang ◽  
Hong Yan Zhai ◽  
Quan Xing Wen ◽  
...  

In this paper, Q235 steel was investigated in order to manufacturing ultra-high strength material. The process of severe cold-rolling and low temperature annealing of lath martensite effectively reduced the crystal size from about 300 nm to 20 nm, and introduced mass weak interfaces in steel, has been demonstrated a new promising technique for producing in-situ composite multi-nanolayer steel with ultra-high strength (b 2112 MPa). Cold rolling and subsequent annealing have great impact on microstructure evolution as well as material mechanical properties. In the as-rolled state, the strength is approximately four times increased than as-received material (hot-rolled state, b 515 MPa), which is attributed to work hardening and grain refining during cold rolling. As the cold-rolled sample subjected to further annealing below 500 , deformed microstructure underwent further recovery and recrystallization, finally became refined equiaxed grains, microstructure characteristics along rolling direction arrangement was decreased; In addition to ultrafine ferrite grains, nano-carbides precipitated uniformly in the specimen annealed at 500 , total elongation increased to 16%, the corresponding yield strength was 1208MPa, much higher than that of as-received samples. The phenomenon of fracture delamination was observed from the specimens, which were cold-rolled and annealed at 500 , and the delamination plane was parallel to the rolling plane. In-situ composite weak interfaces effect has great impact on the fracture surface.


2013 ◽  
Vol 705 ◽  
pp. 483-486
Author(s):  
Guo Jin Chen ◽  
Jing Ni ◽  
Ting Ting Liu ◽  
Ming Xu ◽  
Lu Gao Lin

For the general broaching machines problems of structure bulkiness, poor cylinder synchronization, lack of optimization design, low-grade control system, low efficiency and operational reliability, the paper studied the structural optimization technology of the large-scale high-performance CNC vertical broaching machine, designed the new 360-degree high-load lateral rotary table, the axial-rotary multi-pass joint of the anti-leakage and the elastic-contact, and the modular slider rails, so as to improve the mechanical performance, the working stability and reliability. The remote network intelligent monitoring system and the multi-function data acquisition processor for the developed CNC broaching machine, realize the enterprise management information, the enterprise resource optimization, and the automation and intelligence of the manufacturing process.


Sign in / Sign up

Export Citation Format

Share Document