Anti-Wear and Friction-Reducing Behavior of Nano-ZrO2 Additive

2009 ◽  
Vol 79-82 ◽  
pp. 605-608 ◽  
Author(s):  
Fei Fei Zhang ◽  
Shao Hua Zheng ◽  
Yan Sheng Yin ◽  
Bin Liu

Nano-ZrO2 particles were modified by KH-570 (γ-methacryloxypropyltrimethoxysilane). The nano-ZrO2 before and after modified were characterized by UV-VIS spectrophotometer and transmission electron microscopy (TEM). The anti-wear and friction reduction properties of nano-ZrO2 used as additive in lubrication were analyzed by friction and wear test machine of MMU-10G. The results show that the polarity of nano-ZrO2 after modified is changed, the surface free energy is reduced, and both the dispersity and stability of the modified nano-ZrO2 in organic media are improved. The modified nano-ZrO2 can increase the anti-wear and friction reduction properties of the base oil. Lubrications containing 0.10wt% and 0.05wt% nano-ZrO2 have the best tribological properties in the four-ball test and the thrust-ring test, respectively. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) was used to analyze the protective layer formed on the rubbed surface, and Zr elements were found on the rubbed surface.

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Mashael Alshabanat ◽  
Amal Al-Arrash ◽  
Waffa Mekhamer

Polymer nanocomposites of polystyrene matrix containing 10% wt of organo-montmorillonite (organo-MMT) were prepared using the solution method with sonication times of 0.5, 1, 1.5, and 2 hours. Cetyltrimethylammonium bromide (CTAB) is used to modify the montmorillonite clay after saturating its surface with Na+ions. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the montmorillonite before and after modification by CTAB. The prepared nanocomposites were characterized using the same analysis methods. These results confirm the intercalation of PS in the interlamellar spaces of organo-MMT with a very small quantity of exfoliation of the silicate layers within the PS matrix of all samples at all studied times of sonication. The thermal stability of the nanocomposites was measured using thermogravimetric analysis (TGA). The results show clear improvement, and the effects of sonication time are noted.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Thuy-Chinh Nguyen ◽  
Tien-Dung Nguyen ◽  
Duc-Toan Vu ◽  
Duc-Phuong Dinh ◽  
Anh-Hiep Nguyen ◽  
...  

This paper presents some characteristics, properties, and morphology of TiO2 nanoparticles (nano-TiO2) modified with various contents of 3-(trimethoxysilyl)propyl methacrylate (TMSPM) coupling agent. The treatment process was carried out in ethanol solvent at 50oC using ammonia as a catalyst for hydrolysis reaction of silane to silanol. Infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy, field emission scanning electron microscopy, dynamic light scattering, ultraviolet-visible spectroscopy, and X-ray diffraction methods were used for determination of the characteristics, properties of nano-TiO2 before and after treatment. In addition, the contact angle and grafting efficiency of TMSPM on the surface of TiO2 nanoparticles was also evaluated. The obtained results confirmed that TMSPM was grafted to the TiO2 nanoparticles, the agglomeration of nano-TiO2 was decreased, and surface of TiO2 nanoparticles became hydrophobic after modification by TMSPM.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1789
Author(s):  
Changseok Han ◽  
Mallikarjuna Nadagouda

Various compositions of barium carbonate (BaCO3) loaded polycaprolactone (PCL) composites were prepared, including 2.5/97.5, 10/90, 30/70, 50/50 and 90/10 (PCL/BaCO3), via re-precipitation technique. Small-scale column tests were conducted to study the efficiency of sulfate removal using the PCL/BaCO3 composites. The composites before and after their use to remove sulfate were extensively characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), and thermogravimetric analysis (TGA). As PCL is a biodegradable polymer, these composites are environmentally friendly and have several advantages over barium sulfate precipitation in overcoming clogging issues in filters or resins due to collection of natural organic matter (NOM). The media used in this study exhibited high capacity and was able to remove more than 90% sulfate from synthetic sulfate containing waters and NOM samples collected from the Ohio River.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jiajia Liu ◽  
Yingxiang Fang ◽  
Gaini Jia ◽  
Shouqi Chen ◽  
Jianmin Hu

The microscopic pore structure of coal affects the content of adsorbed gas. The microstructure of coal sample before and after loading is different, which will affect the adsorption and permeability of coal seam gas. In order to study this difference, the authors carried out mercury intrusion experiments on coal containing different coal samples and used nondestructive nuclear magnetic resonance (NMR) techniques, scanning electron microscopy, and transmission electron microscopy, to study the microstructure of coal samples before and after loading. The experimental results show that the pores of coal samples are mainly micropores and small pores, and the mesopores and macropores are relatively few. The T2 spectrum area of the coal sample is significantly increased after loading, and the parallel-layer coal samples’ T2 spectrum area is 46735, which is 9112 more than the vertical layer coal samples. The T2 spectrum of the vertical coalbed of saturated water samples shows a three-peak shape, the peak of the T2 spectrum is 12692, and the parallel bedding shows a bimodal morphology. The peak area of the T2 spectrum is 11277. The permeability of the parallel bedding coal sample is good, and the coal sample exhibits anisotropic properties. The pores and cracks of the coal samples increased after loading, and the localized area of the coal sample collapsed and formed a fracture zone, which was not conducive to the occurrence of coal seam gas. Further explanation of the changes in the permeability of the coal sample before and after loading will affect the gas storage and transportation.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 808 ◽  
Author(s):  
Binzhou Li ◽  
Changsheng Li ◽  
Yu Wang ◽  
Xin Jin

This paper investigated the response of carburized 20CrNi2MoV steel to cryogenic treatment including microstructure and wear resistance. Two cryogenic treatment methods including cryogenic treatment at −80 °C (CT) and deep cryogenic treatment at −196 °C (DCT) as well as conventional heat treatment (CHT) were carried out after carburizing process. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffractometry (XRD) were employed for microstructure characterization. The wear resistance was investigated by ball-on-disc sliding wear test on a multi-functional tribometer. The results show that the wear resistance of the experimental steel has been improved by 17% due to CT and by 25.5% due to DCT when compared to CHT. This significant improvement in wear resistance after cryogenic treatment is attributed to the microstructural changes including the finer martensitic structure, the reduction of retained austenite and the development of fine and more numerous carbides. Among these factors, the precipitation of fine carbides plays a more prominent role in enhancing wear resistance.


2018 ◽  
Vol 70 (3) ◽  
pp. 512-518 ◽  
Author(s):  
Alaa Mohamed ◽  
Mohamed Hamdy ◽  
Mohamed Bayoumi ◽  
Tarek Osman

Purpose To enhance the tribological properties of nanogrease, one of the new technologies was used to synthesize a nanogrease having carbon nanotubes (CNTs) nanoparticles (NPs) with different concentrations. The microstructures of the synthesized NPs were characterized and evaluated by x-ray diffraction spectroscopy (XRD) and transmission electron microscopy (TEM). Tribological properties of the nanogrease were evaluated using a four-ball tester. The worn surface of four steel balls was investigated by scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). Design/methodology/approach Grease was dissolved in chloroform (10 Wt.%), at 25 °C for 1 h. In parallel, functionalized CNTs with different volume concentrations (0.5, 1, 2 and 3 Wt.%) were dispersed in N, N-dimethylformamide. The mixture was stirred for 15 min and then sonicated (40 kHz, 150 W) for 30 min. After that, the mixture was added to the grease solution and magnetically stirred for 15 min and then sonicated for 2 h. Findings The results suggested that CNTs can enhance the antiwear and friction properties of nanogrease at 0.5 Wt.% CNTs to about 57 and 48 per cent, respectively. In addition, the weld load of the base oil containing 0.5 Wt.% CNTs was improved by 17 per cent compared with base grease. Originality/value This work describes the inexpensive and simple fabrication of nanogrease for improving the properties of lubricants, which improve power efficiency and extend lifetimes of mechanical equipment.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Flavio A. C. Vidal ◽  
Antonio F. Ávila

A top-down approach is employed to investigate the tribological effect of adding nanographite platelets (NGPs) to mineral base oil (MBO). The performance of the NGP-modified MBO was evaluated by examining the friction and anti-wear properties. Four different types of NGPs produced by two different processes were employed. The optimal NGP-modified MBO attained a significant wear and friction reduction when compared with the MBO without NGPs. The process used to exfoliate the graphite nanoplatelet samples provided better wear properties because of the graphene layers' smoother sliding mechanism. Graphene layers seeped inside the groove marks to keep the friction coefficient low.


2008 ◽  
Vol 294 (2) ◽  
pp. R510-R519 ◽  
Author(s):  
Leanid Luksha ◽  
Henry Nisell ◽  
Natallia Luksha ◽  
Marius Kublickas ◽  
Kjell Hultenby ◽  
...  

We hypothesized that in preeclampsia (PE), contribution of endothelium-derived hyperpolarizing factor (EDHF) and the mechanism/s of its action differ from that in normal pregnancy (NP). We aimed to assess endothelial function and morphology in arteries from NP and PE with particular focus on EDHF. Arteries (≈200 μm) were dissected from subcutaneous fat biopsies obtained from women undergoing cesarean section. With the use of wire myography, responses to the endothelium-dependent agonist bradykinin (BK) were determined before and after inhibition of pathways relevant to EDHF activity. The overall responses to BK in arteries from PE ( n = 13) and NP ( n = 17) were similar. However, in PE, EDHF-mediated relaxation was reduced ( P < 0.05). All women within the PE group were divided into two subgroups: with more ( group 1) or less ( group 2) than 50% reduction of EDHF-typed responses after 18-α-glycyrrhetinic acid (an inhibitor of myoendothelial gap junctions, MEGJs). The division showed that 1) MEGJs are principally involved when the EDHF contribution is reduced; and 2) when the EDHF contribution is similar to that in NP, the H2O2 and/or cytochrome P-450 epoxygenase products of arachidonic acid (AA), along with MEGJs, confer EDHF-mediated relaxation. In contrast, MEGJs were the main pathway for EDHF in NP. The abundant presence of MEGJs in arteries from NP but deficiency of them in PE was observed using transmission electron microscopy. We conclude that PE is associated with heterogeneous contribution of EDHF, and the mechanism behind EDHF-typed responses is mediated either by MEGJs alone or in combination with H2O2 or cytochrome P-450 epoxygenase metabolites of AA.


2008 ◽  
Vol 8 (12) ◽  
pp. 6445-6450
Author(s):  
F. Paraguay-Delgado ◽  
Y. Verde ◽  
E. Cizniega ◽  
J. A. Lumbreras ◽  
G. Alonso-Nuñez

The present study reports the synthesis method, microstructure characterization, and thermal stability of nanostructured porous mixed oxide (MoO3-WO3) at 550 and 900 °C of annealing. The material was synthesized using a hydrothermal method. The precursor was prepared by aqueous solution using ammonium heptamolibdate and ammonium metatungstate, with an atomic ratio of Mo/W = 1. The pH was adjusted to 5, and then the solution was transferred to a teflon-lined stainless steel autoclave and heated at 200 °C for 48 h. The resultant material was washed using deionized water. The specific surface area, morphology, composition, and microstructure before and after annealing were studied by N2 physisorption, scanning electron microscopy (SEM), analytical transmission electron microscopy (TEM), and X-Ray diffraction (XRD). The initial synthesized materials showed low crystallinity and high specific surface area around (141 m2/g). After thermal annealing the material showed higher crystallinity and diminished its specific surface area drastically.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Yitian Peng ◽  
Zhonghua Ni

The oxidized multiwalled carbon nanotubes (MWCNTs) were modified with stearic acid (SA) molecules. The SA-modified MWCNTs were characterized with scanning electron microscopy, transmission electron microscopy, and Fourier transform-infrared spectroscopy. The tribological properties of the oxidized and SA-modified MWCNTs as additives in water were comparatively investigated with a four-ball tester. The results showed the SA-modified MWCNTs in water have better tribological properties including friction reduction and antiwear than oxidized MWCNTs. The possible mechanism of SA-modified MWCNT as an additive in water was discussed. This research provides the opportunity for the lubricant application of MWCNTs.


Sign in / Sign up

Export Citation Format

Share Document