Analysis of the Reinforced Masonry on Shear Capacity

2013 ◽  
Vol 790 ◽  
pp. 109-111
Author(s):  
Yang Yu ◽  
Xin Jun Zhuang ◽  
Yun Feng Zhang ◽  
Zhao Qing Yuan

The reinforced masonry structure system is turned up as a new group of high-rise building structure type. This paper mainly researched the shear of reinforced masonry structure under earthquake. The maximum shears of the structure are calculated in X and Y direction by numerical analysis method. The changing of the shear bearing capacity is presented under three kinds of seismic waves.

2013 ◽  
Vol 405-408 ◽  
pp. 2030-2033
Author(s):  
Yang Yu ◽  
Xin Jun Zhuang ◽  
Yun Feng Zhang ◽  
Jie Dong Zhang

It is very important to develop reinforced block masonry structure system with a good anti-seismic performance and convenient construction. This paper mainly researched the displacement response of the reinforced masonry structure under earthquake. The maximum storey drift and displacement of the structure are calculated in Y direction by numerical analysis method.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Fenghui Dong ◽  
Zhipeng Zhong ◽  
Jin Cheng

This paper conducts a numerical simulation of the antiseismic performance for single-layer masonry structures, completes a study on crack distributions and detailed characteristics of masonry structures, and finally verifies the correctness of the numerical model by experimental tests. This paper also provides a reinforced proposal to improve the antiseismic performance of single-layer masonry structures. Results prove that the original model suffers more serious damage than the reinforced model; in particular, longitudinal cracks appear on bottoms of two longitudinal walls in the original model, while these cracks appear later in the reinforced model; a lot of cracks appear on the door hole of the original model, and no crack appears in the reinforced model till the end of seismic waves; seismic damage of walls in the reinforced model is obviously lighter than that in the original model; dynamic responses at all observed points of the reinforced masonry are obviously less than those of the original model. Strains at all positions of the reinforced model are obviously smaller than those of the original model. From macroscopic and microscopic perspectives, the computational results prove that the reinforced proposal proposed in this paper can effectively improve the antiseismic performance of the masonry structure.


2014 ◽  
Vol 989-994 ◽  
pp. 3075-3078
Author(s):  
Miao Yu ◽  
Zhi Hong Dai ◽  
Gui Juan Hu

In this paper, a new analysis model to assess the structure seismic capability is established, using improved capacity spectrum method. The model can solve the problem of many unknown and big computation workload in the process of conventional Pushover analysis. Conventional Pushover is very complex when use in the analysis of structure dynamic problem and nonlinear problem, the new model can solve these problem.


2012 ◽  
Vol 455-456 ◽  
pp. 1079-1083
Author(s):  
Wei Jun Yang ◽  
Hong Jia Huang ◽  
Wen Yu Jiang ◽  
Yi Bin Peng

Shantou atmospheric salt-fog environment is simulated with the comprehensive salt spray test chamber. By using reinforced concrete short beams under different water-cement radio, different corrosion time, the inclined section degradation rules of the corrosive reinforced concrete members are researched for establishing shear capacity of short beam formulas in salt-fog environment.


2021 ◽  
Vol 11 (10) ◽  
pp. 4421
Author(s):  
Zhiming Zhang ◽  
Fenglai Wang

In this study, four single-story reinforced masonry shear walls (RMSWs) (two prefabricated and two cast-in-place) under reversed cyclic loading were tested to evaluate their seismic performance. The aim of the study was to evaluate the shear behavior of RMSWs with flanges at the wall ends as well as the effect of construction method. The test results showed that all specimens had a similar failure mode with diagonal cracking. However, the crack distribution was strongly influenced by the construction method. The lateral capacity of the prefabricated walls was 12% and 27% higher than that of the corresponding cast-in-place walls with respect to the rectangular and T-shaped cross sections. The prefabricated walls showed better post-cracking performance than did the cast-in-place wall. The secant stiffness of all the walls decreased rapidly to approximately 63% of the initial stiffness when the first major diagonal crack was observed. The idealized equivalent elastic-plastic system showed that the prefabricated walls had a greater displacement ductility of 3.2–4.8 than that of the cast-in-place walls with a displacement ductility value of 2.3–2.7. This proved that the vertical joints in prefabricated RMSWs enhanced the seismic performance of walls in shear capacity and ductility. In addition, the equivalent viscous damping of the specimens ranged from 0.13 to 0.26 for prefabricated and cast-in-place walls, respectively.


2005 ◽  
Vol 32 (2) ◽  
pp. 314-328 ◽  
Author(s):  
Young K Ju ◽  
Do-Hyun Kim ◽  
Sang-Dae Kim

The number of high-rise buildings has greatly increased in Korea, and storey height is a significant component of tall residential buildings due to the limited city area. To reduce storey height, the wide beam has been adopted in some projects in Seoul such as Trump World, Galleria Palace, and Richencia. The joints between the wide beam and the core wall were too narrow to place the reinforcement, however. This paper investigates a newly developed structural system called the innovative, technical, economical, and convenient hybrid system (iTECH system). The iTECH system has an asymmetric steel assembly with web openings, where the top plate is welded on top of inverted structural "tees" whose cut is referred to as a "honeycomb" type. Both sides of the web and the slab are filled with cast-in-place concrete. The shear capacity was experimentally evaluated and verified, with parameters determined by factors that shared the shear strength of the iTECH beam. The steel web, inner concrete panel, and outer concrete panel contributed to the shear strength of the iTECH beam. The shear stirrup did not contribute much to the shear strength, however, and therefore a design equation using the steel web and inner concrete panel was suggested.Key words: composite beam, shear capacity, monotonic test, high-rise building.


2011 ◽  
Vol 368-373 ◽  
pp. 2175-2179
Author(s):  
Tian Lai Yu ◽  
Hong Kun Han ◽  
Xin Yu Li ◽  
Qiang Ma

The shear resistant with SWR (steel wire rope) external prestressing is a kind of new type of reinforcement technique. The advantages of the method are ideal reinforcement effect, durability, and convenient construction. So the method has been paid attention by more and more scientists and technical workers. Through the experiment of 1 basic beam and 3 strengthened beams which are in different dead load levels, the influence of damage degree of original beams and the dead load level of strengthened beams are analyzed. The reduction coefficient values of shear capacity under different dead load level are researched. The research is shown that: with the dead load level increasing, the improve degree of shear capacity of strengthened concrete beams is smaller. The mathematical model is established, which is about dead load level and reduction coefficient of shear capacity of strengthened concrete beams. The result is to take 0.75 as the reduction coefficient of shear capacity. The value is reasonable in calculating the shear bearing capacity of strengthened beams under dead load.


2011 ◽  
Vol 199-200 ◽  
pp. 251-256
Author(s):  
Kai An Yu ◽  
Ke Yu Chen

Based on requirements of pipe transport systems on deepwater pipelaying vessel, a new pipe lifting mechanism was designed. It was composed of crank-rocker and rocker-slider mechanism with good lifting capacity and high efficiency. When the slider went to the upper limit position, the mechanism could approximatively dwell, meeting the requirement for transverse conveyor operation. According to the theory of dynamics, numerical analysis method was used to the dynamic analysis of the mechanism. The results showed the maximum counterforce was at the joint between the rocker and ground, and this calculation could be a guideline for the kinematic pair structure designing.


Sign in / Sign up

Export Citation Format

Share Document