Removal of Cr(VI) from Aqueous Solution Using Activated Carbon Prepared from Several Agriculture By-Products

2013 ◽  
Vol 807-809 ◽  
pp. 582-590
Author(s):  
Zi Cheng Yi ◽  
Shi Ming Luo ◽  
Gen Li ◽  
Hua Shou Li ◽  
Hui Min Lin

The adsorption characteristics of Cr(VI) on activated carbon prepared from several agriculture by-products via sulphuric acid-treatment were compared and the best concentration of sulphuric acid for carbonization were evaluated. It is confirmed that peanut shell is best material for the absorption of Cr(VI) ion from aqueous solution among hybrid giant napier straw, rice husk and commercial activated carbon in this study. The effects of agitation time, solution pH, temperature and Cr(VI) initial concentration on Cr(VI) adsorption were investigated. The 3:1 volume ratio of sulphuric acid : deionized water is the optimal concentration for Cr(VI) biosorption for peanut shell carbonization. Cr(VI) adsorption is highly dependent on solution pH. Initial solution pH =1.5 was the most favorable pH for Cr(VI) removal. Cr(VI) biosorption increases with increasing initial concentration, agitation time and solution temperature. The adsorption kinetics is found well fitted to the pseudo-second-order kinetic model. The adsorption equilibrium data are best represented by Langmuir model.The maximum adsorption capacity of carbonized peanut shell for Cr(VI) reached 26.22 mg/g.

2019 ◽  
Vol 54 (4) ◽  
pp. 299-308 ◽  
Author(s):  
Deniz Akin Sahbaz ◽  
Sahra Dandil ◽  
Caglayan Acikgoz

Abstract This study dealt with preparation of the activated carbon derived from active sludge as an adsorbent for the adsorption of crystal violet (CV) from aqueous solution. The waste active sludge was activated chemically with KOH and carbonized to get activated carbon with a large surface area and a high porosity. The activated carbon was characterized by Fourier transform infrared (FTIR) spectroscopy, Brunauer–Emmett–Teller (BET) instrument, and scanning electron microscopy (SEM). Adsorption of CV from aqueous solution onto the activated carbon was investigated under varying conditions, such as adsorbent dosage (1–6 g/L), solution pH (4–9), contact time period (0–150 min), initial dye concentration (20–100 mg/L), and temperature (25–55 °C). 4.0 g/L of adsorbent dosage was chosen as the optimum level due to having a high removal rate (96.2%) (initial CV concentration 60 mg/L; 150 rpm; pH 6; 25 °C). The adsorption kinetic and adsorption isotherms were well described by the pseudo second order kinetic and the Freundlich isotherm model, respectively. The thermodynamic parameters indicated that the adsorption is a spontaneous process and favored at higher temperatures. The results show that the activated carbon derived from active sludge could be employed as a low-cost material for the removal of CV dye.


2012 ◽  
Vol 15 (2) ◽  
pp. 145-152 ◽  
Author(s):  
Hosne Ara Begum ◽  
Ajoy Kanti Mondal ◽  
Tanvir Muslim

The utilization of chitin as adsorbent for the removal of Reactive Black 5 (RB5) from aqueous solution was investigated. Chitin was prepared from shrimp shells using conventional method. Prepared chitin was characterized by FT-IR spectral and thermogravimetric analysis. Batch adsorption experiments were carried out as a function of contact time, initial concentration of RB5 solution, temperature and pH of the solution. The amount of adsorption of RB5 from aqueous solution on chitin increased with the increase of initial concentration of RB5 solution and temperature of the solution. The equilibrium adsorption data were fitted to the Langmuir and Freunlich isotherms. The best result was achieved with Langmuir isotherm model. The thermodynamics of reactive dye by chitin indicated its spontaneous and endothermic nature. The kinetic of the sorption was analysed using the pseudo firstorder and second-order kinetic models. The data showed that the pseudo second-order equation was the more appropriate. The experimental data showed that the adsorption capacity was gradually decreased with the increment of pH. DOI: http://dx.doi.org/10.3329/bpj.v15i2.12580 Bangladesh Pharmaceutical Journal 15(2): 145-152, 2012


2021 ◽  
Vol 17 (1) ◽  
pp. 95-103
Author(s):  
Mohamad Firdaus Mohamad Yusop ◽  
Mohd Azmier Ahmad ◽  
Nur Ayshah Rosli ◽  
Fadzil Noor Gonawan ◽  
Soran Jalal Abdullah

Physiochemical activation consists of heat treatment coupling with CO2 gasification and KOH chemical treatment were applied in preparing durian peel based activated carbon (DPAC) to remove basic dye, malachite green (MG) from aqueous solution. Several parameters namely, effect of initial MG concentration as well as contact time, solution temperature and initial solution pH were carried out in this study. Characterization study revealed that DPAC pose high BET surface area which is 886.31 m2/g and its surface was found to be mesoporous in nature with heterogeneous type of pore structures. Eight isotherms and four kinetic models were utilized and it was revealed that the adsorpttion system followed Freundlich isotherm and pseudo-first order (PFO) kinetic model. Mechanism study using intraparticle diffusion and Boyd plot confirmed that adsorption of MG onto DPAC was controlled by the film-diffusion mechanism. Thermodynamic study indicated that the adsorption system was exothermic, spontaneous, feasible and governed by physical-type of adsorption.


2014 ◽  
Vol 9 (No. 4) ◽  
pp. 224-232 ◽  
Author(s):  
S. Sepehri ◽  
M. Heidarpour ◽  
J. Abedi-Koupai

A report on the synthesis and characterization of nanoscale zero-valent iron in the presence of natural zeolite as a stabilizer is presented. This novel adsorbent (Ze-nZVI) was synthesized by the sodium borohydride reduction method. The scanning electron microscopy (SEM) images revealed that the stabilized nZVI particles were uniformly dispersed across the zeolite surface without obvious aggregation. The synthesized Ze-nZVI material was then tested for the removal of nitrate from aqueous solution. The effect of various parameters on the removal process, such as initial concentration of nitrate, contact time, initial pH, and Ze-nZVI dosage, was studied. Batch experiments revealed that the supported nZVI materials generally have great flexibility and high activity for nitrate removal from aqueous solution. The nitrogen mass balance calculation showed that ammonium was the major product of nitrate reduction by Ze-nZVI (more than 84% of the nitrate reduced); subsequently the natural zeolite in Ze-nZVI removed it completely via adsorption. The kinetic experiments indicated that the removal of nitrate followed the pseudo-second-order kinetic model. The removal efficiency for nitrate decreased continuously with an increase in the initial solution pH value and Ze-nZVI dosage but increased with the increase in the initial concentration of nitrate. The overall results indicated the potential efficacy of Ze-nZVI for environmental remediation application.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Mohd Azhar Ahmad ◽  
Safarudin Gazali Herawan ◽  
Ahmad Anas Yusof

The adsorption of remazol brilliant blue R (RBBR) dye on pinang frond based activated carbon (PF-AC) was investigated in a batch process. The effects of initial dye concentration, contact time, solution temperature, and solution pH were evaluated. The adsorption equilibrium and kinetic were found to follow Freundlich isotherm models and pseudo-second-order kinetic model, respectively. The mechanism of the adsorption process was found from the intraparticle diffusion model. Result from adsorption thermodynamic show that interaction for RBBR dye was found to be feasible, nonspontaneous, and endothermic. The results indicated that the PF-AC is very effective for the RBBR adsorption from aqueous solution.


2011 ◽  
Vol 197-198 ◽  
pp. 131-135
Author(s):  
Li Fang Zhang ◽  
Ying Ying Chen ◽  
Wen Jie Zhang

Biosorption of chromium (VI) ions from aqueous solution with fungal biomass Penicillium sp. was investigated in the batch system. The influence of contact time, solution pH, biosorbent concentration, initial concentration of Cr (VI) ions and temperature on biosorption capacity of Cr (VI) ions was studied. The uptake of Cr (VI) was highly pH dependent and the optimum pH for biosorption of Cr (VI) ions was found to be 2.0. Biosorption capacity of Cr (VI) ions decreased with increased biosorbent concentration and increased with increase in initial concentration of Cr (VI) ions. The experiment results also showed that high temperatures increased the biosorption capacity of Cr (VI) by fungal biomass. It was found that the biosorption equilibrium data were fitted very well to the kangmuir as well as to the Freundlich adsorption model. The maximum sorptive capacities obtained from the Langmuir equation at temperature of 20, 30 and 40°C were 25.91, 32.68 and 35.97 mg/g for Cr (VI) ions, respectively. The results of this study indicated that the fungal biomass of Penicillium sp. is a promising biosorbent for removal of chromium (VI) ions from the water.


2017 ◽  
Vol 29 (1) ◽  
pp. 9-13
Author(s):  
Masuma Sultana Ripa ◽  
Rafat Mahmood ◽  
Sabrina Khan ◽  
Easir A Khan

Adsorption separation of phenol from aqueous solution using activated carbon was investigated in this work. The adsorbent was prepared from coconut shell and activated by physical activation method. The coconut shell was first carbonized at 800°C under nitrogen atmosphere and activated by CO2 at the same temperature for one hour. The prepared activated carbon was characterized by Scanning Electron Microscope (SEM) and BET Surface Analyzer and by the determination of iodine number as well as Boehm titration. The iodine number indicates the degree of relative activation of the adsorbent. The equilibrium adsorption isotherm phenol from aqueous solution was performed using liquid phase batch adsorption experiments. The effect of experimental parameters including solution pH, agitation time, particle size, temperature and initial concentration was investigated. The equilibrium data was analyzed using Langmuir and Freundlich adsorption model to describe the adsorption isotherm and estimate the adsorption isotherm parameters. The results indicate the potential use of the adsorbent for removal of phenol from the aqueous solution.Journal of Chemical Engineering, Vol. 29, No. 1, 2017: 9-13


2013 ◽  
Vol 726-731 ◽  
pp. 2100-2106 ◽  
Author(s):  
Hua Zhang ◽  
Xue Hong Zhang ◽  
Yi Nian Zhu ◽  
Shou Rui Yuan

Activated carbon prepared from grapefruit peel, an agricultural solid waste by-product, has been used for the adsorption of Cr(VI) from aqueous solution. The effects of adsorbent dosage, pH and temperature on adsorption of Cr(VI) were investigated. The maximum adsorption yield was obtained at the initial pH of 3. The dynamical data fit very well with the pseudo-second-order kinetic model and the calculated adsorption capacities (23.98, 24.33 and 24.81 mg/g) were in good agreement with experiment results at 20°C, 30°C and 40 °C for the 100 mg/L Cr(VI) solution. The Freundlich model (R2 values were 0.9198-0.9871) fitted adsorption data better than the Langmuir model. The calculated parameters confirmed the favorable adsorption of Cr(VI) on the activated carbon prepared from grapefruit peel.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 6100-6120
Author(s):  
Yinan Hao ◽  
Yanfei Pan ◽  
Qingwei Du ◽  
Xudong Li ◽  
Ximing Wang

Armeniaca sibirica shell activated carbon (ASSAC) magnetized by nanoparticle Fe3O4 prepared from Armeniaca sibirica shell was investigated to determine its adsorption for Hg2+ from wastewater. Fe3O4/ASSAC was characterized using XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), SEM (scanning electron microscopy), and BET (Brunauer–Emmett–Teller). Optimum adsorption parameters were determined based on the initial concentration of Hg2+, reaction time, reaction temperature, and pH value in adsorption studies. The experiment results demonstrated that the specific surface area of ASSAC decreased after magnetization; however the adsorption capacity and removal rate of Hg2+ increased 0.656 mg/g and 0.630%, respectively. When the initial concentration of Hg2+ solution was 250 mg/L and the pH value was 2, the adsorption time was 180 min and the temperature was 30 °C, and with the Fe3O4/ASSAC at 0.05 g, the adsorption reaching 97.1 mg/g, and the removal efficiency was 99.6%. The adsorption capacity of Fe3O4/ASSAC to Hg2+ was in accord with Freundlich isotherm models, and a pseudo-second-order kinetic equation was used to fit the adsorption best. The Gibbs free energy ΔGo < 0,enthalpy change ΔHo < 0, and entropy change ΔSo < 0 which manifested the adsorption was a spontaneous and exothermic process.


Sign in / Sign up

Export Citation Format

Share Document