scholarly journals Equilibrium, Kinetics, and Thermodynamics of Remazol Brilliant Blue R Dye Adsorption onto Activated Carbon Prepared from Pinang Frond

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Mohd Azhar Ahmad ◽  
Safarudin Gazali Herawan ◽  
Ahmad Anas Yusof

The adsorption of remazol brilliant blue R (RBBR) dye on pinang frond based activated carbon (PF-AC) was investigated in a batch process. The effects of initial dye concentration, contact time, solution temperature, and solution pH were evaluated. The adsorption equilibrium and kinetic were found to follow Freundlich isotherm models and pseudo-second-order kinetic model, respectively. The mechanism of the adsorption process was found from the intraparticle diffusion model. Result from adsorption thermodynamic show that interaction for RBBR dye was found to be feasible, nonspontaneous, and endothermic. The results indicated that the PF-AC is very effective for the RBBR adsorption from aqueous solution.

2016 ◽  
Vol 22 (2) ◽  
pp. 167-179 ◽  
Author(s):  
Didem Özçimen ◽  
Tufan Salan

In this study, adsorbents were produced from sewage sludge via chemical and thermal activation processes. Experiments were carried out in a tubular furnace at the heating rate of 20?C min-1 and temperature of 550 ?C with a nitrogen flow rate of 400 mL min-1 for 1 h. Dye adsorption experiments were performed with Remazol Brilliant Blue R for its several concentrations under batch equilibrium conditions by comparing sewage sludge based adsorbents with raw material and a commercial activated carbon. Maximum adsorption capacities of carbonized sewage sludge (CSWS) and activated sewage sludge (ASWS) were found as 7.413 mg g-1 and 9.376 mg g-1 for 100 mg L-1 dye solution, whereas commercial activated carbon had a capacity of 11.561 mg g-1. Freundlich and Langmuir isotherms were used to explain the adsorption mechanism together with pseudo-first-order and pseudo-second-order kinetic models. Langmuir isotherm, which had adsorption capacities of 34.60 mg g-1 (CSWS) and 72.99 mg g-1 (ASWS), provided better fit to the equilibrium data than that of Freundlich isotherm. Pseudo second-order, model which had adsorption capacities of 7.451 mg g-1 (CSWS) and 9.319 mg g-1 (ASWS), was very favorable to explain the adsorption kinetics of the dye with high regression coefficients.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4446
Author(s):  
Nouf F. Al-Harby ◽  
Ebtehal F. Albahly ◽  
Nadia A. Mohamed

Novel Cyanoguanidine-modified chitosan (CCs) adsorbent was successfully prepared via a four-step procedure; first by protection of the amino groups of chitosan, second by insertion of epoxide rings, third by opening the latter with cyanoguanidine, and fourth by restoring the amino groups through elimination of the protection. Its structure and morphology were checked using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The adsorption capacity of CCs for Congo Red (CR) dye was studied under various conditions. It decreased significantly with the increase in the solution pH value and dye concentration, while it increased with increasing temperature. The adsorption fitted to the pseudo-second order kinetic model and Elovich model. The intraparticle diffusion model showed that the adsorption involved a multi-step process. The isotherm of CR dye adsorption by CCs conforms to the Langmuir isotherm model, indicating the monolayer nature of adsorption. The maximum monolayer coverage capacity, qmax, was 666.67 mg g−1. Studying the thermodynamic showed that the adsorption was endothermic as illustrated from the positive value of enthalpy (34.49 kJ mol−1). According to the values of ΔG°, the adsorption process was spontaneous at all selected temperatures. The value of ΔS° showed an increase in randomness for the adsorption process. The value of activation energy was 2.47 kJ mol−1. The desorption percentage reached to 58% after 5 cycles. This proved that CCs is an efficient and a promising adsorbent for the removal of CR dye from its aqueous solution.


2020 ◽  
Vol 28 ◽  
pp. 100426 ◽  
Author(s):  
Mohd Azmier Ahmad ◽  
Muhammad Aswar Eusoff ◽  
Peter Olusakin Oladoye ◽  
Kayode Adesina Adegoke ◽  
Olugbenga Solomon Bello

2015 ◽  
Vol 73 (2) ◽  
pp. 423-436 ◽  
Author(s):  
Çisem Kırbıyık ◽  
Ayşe Eren Pütün ◽  
Ersan Pütün

In this study, Fe(III) and Cr(III) metal ion adsorption processes were carried out with three adsorbents in batch experiments and their adsorption performance was compared. These adsorbents were sesame stalk without pretreatment, bio-char derived from thermal decomposition of biomass, and activated carbon which was obtained from chemical activation of biomass. Scanning electron microscopy and Fourier transform–infrared techniques were used for characterization of adsorbents. The optimum conditions for the adsorption process were obtained by observing the influences of solution pH, adsorbent dosage, initial solution concentration, contact time and temperature. The optimum adsorption efficiencies were determined at pH 2.8 and pH 4.0 for Fe(III) and Cr(III) metal ion solutions, respectively. The experimental data were modelled by different isotherm models and the equilibriums were well described by the Langmuir adsorption isotherm model. The pseudo-first-order, pseudo-second-order kinetic, intra-particle diffusion and Elovich models were applied to analyze the kinetic data and to evaluate rate constants. The pseudo-second-order kinetic model gave a better fit than the others. The thermodynamic parameters, such as Gibbs free energy change ΔG°, standard enthalpy change ΔH° and standard entropy change ΔS° were evaluated. The thermodynamic study showed the adsorption was a spontaneous endothermic process.


2012 ◽  
Vol 620 ◽  
pp. 224-229
Author(s):  
Mohd Nazri Idris ◽  
Zainal Arifin Ahmad ◽  
Mohd Azmier Ahmad

In the present work, activated carbon was prepared from rubber seed coat by physicochemical activation for the removal of Remazol Brilliant Blue R (RBBR) dye from aqueous solution. The effects of dye initial concentration, contact time, solution temperature and pH on RBBR adsorption onto rubber seed coat based activated carbon (RSCAC) were investigated. The adsorption uptake was found to increase with increase in initial dye concentration and contact time. Change in temperature and pH also played an important role to RBBR adsorption capability. Study showed that rubber seed coat is suitable to be used as activated carbon precursor.


2013 ◽  
Vol 319 ◽  
pp. 245-248 ◽  
Author(s):  
Yi Ke Li ◽  
Ya Dong Wang ◽  
Yang Zhang ◽  
Run Ping Han ◽  
Yan Qiang Li

The adsorption studies of 4-chlorophenol from aqueous solution on activated carbon derived from wheat straw (WAC) have been performed. Several experimental parameters like initial pH, p-CP concentration and solution temperature were evaluated. Solution pH within 2-8 is favor of adsorption and it is disadvantage of adsorption at higher temperature. Langmuir and Freundlich isotherm models were used to fit the experimental data and Langmuir was better. The maximum capacity was 64.8 mg g–1 at 293 K. The process is spontaneous and exothermic and physical action is major mechanism.


2021 ◽  
Vol 21 (4) ◽  
pp. 1039
Author(s):  
Zainab Mohammad Saigl

Lately, there has been an increase in dye manufacturing, resulting in increased environmental pollution. Recent studies show a wide availability of usage adsorbents, including banana peels, potatoes, algae, etc. Food and Drug Administration prohibited the use of Rhodamine B (RhB) for its toxicity and harmful effects. Therefore, this study presents a wide range of non-conventional low-cost alternative adsorbents to remove RhB dye from wastewater. It has been observed that the mechanism of the dye adsorption is focused on kinetics, isotherm, and thermodynamics models, which depend on the chemical nature of the materials and various physicochemical experimental conditions such as solution pH, initial dye concentration, adsorbent dosage, and temperature of the system. The kinetic data of adsorption of RhB dye usually follow the pseudo-first-order and pseudo-second-order kinetic models. Several studies revealed that Langmuir and Freundlich adsorption isotherm models are frequently used to evaluate the adsorption capacity of the adsorbents. Furthermore, thermodynamic examination showed that RhB adsorption was endothermic and unconstrained in nature. Thus, both photocatalytic degradation and adsorption methods offer good potential to remove RhB dye from industrial effluents. The work is in progress to evaluate the possibility of using other modified waste biomass for industrial pollution control.


2021 ◽  
Vol 1 (1) ◽  
pp. 1-10
Author(s):  
Hee Tian Hii

Adsorption technology is one of the efficient and facile method used for wastewater treatment. In this research, coconut shell, an agricultural solid waste was converted into activated carbon via furnace induced and zinc chloride chemical activation techniques. The activated carbon was prepared at activation temperature of 600°C. Anionic dyes, Methyl Orange (MO) and Remazol Brilliant Blue R (RBBR) have been selected due to their harmful effect to the environmental and human. Various effect of parameter such as initial dye concentration, initial pH, adsorbent dosage and agitation speed in batch system were investigated to obtain the optimum condition for both dye adsorption on activated carbon. The optimum dye removal efficiency was around 99% when 5g/L of activated carbon was used. Pseudo-second-order model was the best fitted model with highest correlation compared to other kinetic models. The adsorption behaviour of MO was perfectly presented by the Freundlich model while RBBR was well described by Langmuir model. The maximum adsorption capacity for MO was 59.17mg/g and RBBR was 35.09mg/g. Fourier-transform infrared spectroscopy (FTIR) was utilised to analyse the chemical characteristics of activated carbon before and after adsorption.


2011 ◽  
Vol 671 ◽  
pp. 165-186 ◽  
Author(s):  
A. Xavier ◽  
D. Usha ◽  
J. Gandhi Rajan ◽  
M. Malarvizhi

Malachite Green is an organic compound that is used as a dyestuff for the materials like silk, leather and paper. As a part of removal of malachite green dye from textile and leather industrial wastes, using activated carbon as adsorbents namely, commercial activated carbon (CAC), rose apple carbon (RAC), coconut shell carbon (CSC) and saw dust carbon (SDC). The percentage of malachite green adsorbed increases with decrease in initial concentration and particle size of adsorbent and increased with increase in contact time, temperature and dose of adsorbent. The pH is highly sensitive for dye adsorption process. The adsorption process followed first order kinetics and the adsorption data with Freundlich and Langmuir isotherm models. The first order kinetic equations like Natarajan Khalaf, Lagergren, Bhattacharya and Venkobhachar and intra particle diffusion were found to be applicable. A comparative account of the adsorption capacity of various carbons has been made. These activated carbons are alternative to commercial AC for the removal dyes in General and MG is particular. These results are reported highly efficient and effective and low cost adsorbent for the MG. The thermodynamics parameters are also studied and it obeys spontaneous process. The results are confirmed by before and after adsorption process with the help of the following instrumental techniques viz., FT-IR, UV-Visible Spectrophotometer and SEM photos.


2013 ◽  
Vol 807-809 ◽  
pp. 582-590
Author(s):  
Zi Cheng Yi ◽  
Shi Ming Luo ◽  
Gen Li ◽  
Hua Shou Li ◽  
Hui Min Lin

The adsorption characteristics of Cr(VI) on activated carbon prepared from several agriculture by-products via sulphuric acid-treatment were compared and the best concentration of sulphuric acid for carbonization were evaluated. It is confirmed that peanut shell is best material for the absorption of Cr(VI) ion from aqueous solution among hybrid giant napier straw, rice husk and commercial activated carbon in this study. The effects of agitation time, solution pH, temperature and Cr(VI) initial concentration on Cr(VI) adsorption were investigated. The 3:1 volume ratio of sulphuric acid : deionized water is the optimal concentration for Cr(VI) biosorption for peanut shell carbonization. Cr(VI) adsorption is highly dependent on solution pH. Initial solution pH =1.5 was the most favorable pH for Cr(VI) removal. Cr(VI) biosorption increases with increasing initial concentration, agitation time and solution temperature. The adsorption kinetics is found well fitted to the pseudo-second-order kinetic model. The adsorption equilibrium data are best represented by Langmuir model.The maximum adsorption capacity of carbonized peanut shell for Cr(VI) reached 26.22 mg/g.


Sign in / Sign up

Export Citation Format

Share Document