The Influence of Welding Parameters on Tensile Behavior of Friction Stir Welded Al 2024-T4 Joints

2009 ◽  
Vol 83-86 ◽  
pp. 1197-1204
Author(s):  
E. Mahmudi ◽  
Hassan Farhangi

In the present study, the relationships between friction stir welding parameters and the tensile behavior of Al 2024-T4 joints was investigated. The aluminum alloy plates were butt-welded using a hardened steel tool with a threaded and fluted cylindrical pin at various tool rotation speed to advancing speed ratios. Metallographic observations, EDS analysis and microhardness measurements show that the band spacing in the periodic microstructure of the stir zone and the average microhardness of this region decrease with increasing speed ratio. Tensile ductility is strongly affected by welding parameters and final elongation increases significantly with speed ratio at the constant rotating speed of 900 rpm. This behavior is found to be associated with a change in tensile fracture location. Formation of microscopic voids at low speed ratios leads to premature fracture in the nugget zone, while in the defect-free joints produced at higher speed ratios the fracture location shifts into the HAZ on the retreating side, which exhibits the lowest microhardness value within the weld joint. At the optimum rotation speed of 900 rpm and speed ratio of 11.2 rev/mm the tensile strength and final elongation of the joints are equivalent to 97% and 77% that of base metal, respectively.

2009 ◽  
Vol 83-86 ◽  
pp. 439-448 ◽  
Author(s):  
E. Mahmudi ◽  
Hassan Farhangi

In the present study, the relationships between friction stir welding parameters and the tensile behavior of Al 2024-T4 joints was investigated. The aluminum alloy plates were butt-welded using a hardened steel tool with a threaded and fluted cylindrical pin at various tool rotation speed to advancing speed ratios. Metallographic observations, EDS analysis and microhardness measurements show that the band spacing in the periodic microstructure of the stir zone and the average microhardness of this region decrease with increasing speed ratio. Tensile ductility is strongly affected by welding parameters and final elongation increases significantly with speed ratio at the constant rotating speed of 900 rpm. This behavior is found to be associated with a change in tensile fracture location. Formation of microscopic voids at low speed ratios leads to premature fracture in the nugget zone, while in the defect-free joints produced at higher speed ratios the fracture location shifts into the HAZ on the retreating side, which exhibits the lowest microhardness value within the weld joint. At the optimum rotation speed of 900 rpm and speed ratio of 11.2 rev/mm the tensile strength and final elongation of the joints are equivalent to 97% and 77% that of base metal, respectively.


2012 ◽  
Vol 622-623 ◽  
pp. 323-329
Author(s):  
Ebtisam F. Abdel-Gwad ◽  
A. Shahenda ◽  
S. Soher

Friction stir welding (FSW) process is a solid state welding process in which the material being welded does not melt or recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters and tool pin profile play major roles in deciding the weld quality. In this investigation, an attempt has been made to understand effects of process parameters include rotation speeds, welding speeds, and pin diameters on al.uminum weldment using double shoulder tools. Thermal and tensile behavior responses were examined. In this direction temperatures distribution across the friction stir aluminum weldment were measured, besides tensile strength and ductility were recorded and evaluated compared with both single shoulder and aluminum base metal.


2018 ◽  
Vol 762 ◽  
pp. 339-342
Author(s):  
Ho Sung Lee ◽  
Koo Kil No ◽  
Joon Tae Yoo ◽  
Jong Hoon Yoon

The object of this study was to study mechanical properties of friction stir welded joints of AA2219 and AA2195. AA2219 has been used as an aerospace materials for many years primarily due to its high weldability and high specific strength in addition to the excellent cryogenic property so to be successfully used for manufacturing of cryogenic fuel tank for space launcher. Relatively new Aluminum-Lithium alloy, AA2195 provides significant saving on weight and manufacturing cost with application of friction stir welding. Friction stir welding is a solid-state joining process, which use a spinning tool to produce frictional heat in the work piece. To investigate the effect of the rotation direction of the tool, the joining was performed by switching the positions of the two dissimilar alloys. The welding parameters include the travelling speed, rotation speed and rotation direction of the tool, and the experiment was conducted under the condition that the travelling speed of the tool was 120-300 mm/min and the rotation speed of the tool was 400-800 rpm. Tensile tests were conducted to study the strength of friction stir welded joints and microhardness were measured with microstructural analysis. The results indicate the failure occurred in the relatively weaker TMAZ/HAZ interface of AA2219. The optimum process condition was obtained at the rotation speed of 600-800 rpm and the travelling speed of 180-240 mm/min.


2018 ◽  
Vol 917 ◽  
pp. 246-251
Author(s):  
Kai Xu ◽  
Shu Quan Zhang

A lap welding experiment of DP590 steel and 6061 aluminum plate is carried out by using Heating Friction Stir Spot Welding (HFSSW) to study the influence of welding parameters on the forming quality. The results show that a lap joint with better forming can be obtained for the dissimilar metal of steel and aluminum. Under the condition that the rotating speed of the stirring tool is 1000r/min, the penetration depth, 0.2mm, the dwell time, 90s, the welding pressure, 0.2Mp, and the flow rate of cooling air, 20L/min, the forming quality of the surface of the joint line is good & bright, and the exit hole is also smaller. The mechanism of heat production is revealed in the following: the main heat is produced by the friction between the stirring tool shoulder and the welded part & between the probe and the welded part as well as by the latent heat resulted from the plastic deformation of the material in joint line during welding.


2018 ◽  
Vol 23 (1) ◽  
pp. 52-59
Author(s):  
Carlos Fernando Luna ◽  
Fernando Franco Arenas ◽  
Victor Ferrinho Pereira ◽  
Julián Arnaldo Ávila

Abstract Light-alloys play a significant role in saving weight in automotive and aerospace industries; however, a few joining methods guarantee mechanical and fatigue strengths for high performance application. Even conventional arc welding processes do not offer constant quality joints. Therefore, this study uses an alternative solid-state welding process, friction stir welding (FSW), to analyze post processing microstructures and assess mechanical and fatigue strength. Magnesium alloy AZ31B plates were welded using different welding parameters in a dedicated FSW machine. The effect of the spindle speed (ω) and welding speed (ν) on the microstructure, the tensile strength and fatigue were studied. The stirred zone (SZ) at the FS-welded joints presented a microstructure composed by homogeneous equiaxial grains, refined by dynamic recrystallization. A rise in grain size, weld bead width, tensile and fatigue strengths with the increase of speed ratio (ω/ν) were observed. Results of the fatigue and mechanical strength here presented outperformed results from welds made with conventional milling machines.


2014 ◽  
Vol 592-594 ◽  
pp. 250-254 ◽  
Author(s):  
Sabitha Jannet ◽  
P. Koshy Mathews

The effect of processing parameters on the mechanical and microstructural properties of dissimilar AA6061 t6–AA5083 0 joints produced by friction stir welding was studied. Different samples were produced by varying the advancing speeds of the tool as 20 and 40 mm/min and by varying the alloy positioned on the advancing side of the tool. In the various trials the rotating speed is varied from 600 to 900 RPM. All the welds were produced perpendicular to the rolling direction for both the alloys. Micro hardness (HV) and tensile tests performed at room temperature were used to evaluate the mechanical properties of the joints. Various tests were performed on the joints previously subjected to ageing. In order to analyze the micro structural evolution of the material, the welds’ zones were observed optically.


2018 ◽  
Vol 106 (6) ◽  
pp. 606 ◽  
Author(s):  
İnan Geçmen ◽  
Zarif Çatalgöl ◽  
Mustafa Kemal Bilici

Friction stir welding is a method developed for the welding of high-alloy aluminum materials which are difficult to combine with conventional welding methods. Friction stir welding of MS 63 (brass) plates used different tools (tapered cylindrical, tapered threaded cylindrical), tool rotational speeds (1040, 1500, 2080 rpm) and traverse speeds (30,45,75,113 mm.min−1). Tensile, bending, radiography and microstructure tests were carried out to determine the mechanical properties of brass plates joined by friction stir welding technique. Microstructure characterization studies were based on optical microscope and SEM analysis techniques. In addition, after joining operations, radiographs were taken to see the internal structure failure. Brass sheets were successfully joined to the forehead in the macrostructure study. In the evaluation of the microstructure, it was determined that there were four regions of base metal, thermomechanically affected zone (TMEB), heat-affected zone (HAZ) and stir zone. In both welding tools, the weld strength increased with increasing tool rotation speed. The particles in the stir zone are reduced by increasing of the tool rotation speed. Given the strength and % elongation values, the highest weld strength was achieved with tapered pin tool with a tool rotation speed of 1040 rpm and a tool feed speed of 113 min−1.


Author(s):  
M. Sucharitha ◽  
B. Ravisankar

Friction stir welding could be a solid-state welding has a wide range of applications in industries like aerospace and automobile industries. In this work, the friction stir weld ability of aluminium metal matrix composite(AMMC) using H13 tool and sensitivity of parameters like tool rotation speed, traverse speed and axial force are assessed on final durability, hardness and microstructure. It was observed that the tensile strength and hardness are increased by increasing the tool rotation speed. The microstructure showed fine Al-Mg-Si eutectic particles in a matrix of Al solid solution.


Sign in / Sign up

Export Citation Format

Share Document