An Approach for Continuous Small Line Blocks High Speed Machining of Embedded Systems

2013 ◽  
Vol 842 ◽  
pp. 367-373
Author(s):  
Yao Ting Wang ◽  
Qiu Ju Zhang ◽  
Jin Sai Cheng

A key issue of the machining for the small line block is to improve the machining feedrate while keeping the machining precision and satisfying the acceleration constraints. In this paper, a new approach for continuous small line blocks high speed machining is proposed to avoid the impact of Computer Numerical Control (CNC) equipments caused by acceleration gust. This approach uses the small line flag to distinguish whether the path is small line block. While the paths are continuous small line blocks, this approach can automatically adjust the number of look-ahead segments, and predigest the velocity calculation method of the connection point. We first define what a path is small line block. Then we analyze the restrictions for velocity linking of adjacent processing paths, and propose the approach for continuous small line blocks machining. Finally we design a simulation experiment on 30 points processing of the spline track. The result of the simulation shows that this algorithm can obviously shorten the processing time and make control system more harmonious in high speed machining.

2012 ◽  
Vol 490-495 ◽  
pp. 456-459
Author(s):  
Jun Han ◽  
Rui Li Chang

Open Computer Numerical Control system (Open CNC) based on PC and the Windows operating system has been a major developing direction and a research focus of the current numerical control technology. At present, there have been all kinds of the Open CNC systems with high-speed and precision servo control boards, but they are too expensive. Therefore, developing an economical and practical motion controller is great significant for middle and small numerical control system


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Vincent A Balogun ◽  
Isuamfon F Edem ◽  
Etimbuk B Bassey

The use of electrical energy and coolants/lubricants has been widely reported in mechanical machining. However, increased research and process innovation in high speed machining has brought about optimised manufacturing cycle times. This has promoted dry machining and the use of minimum quantity lubrication (MQL). This work understudies the impact of different cutting environments in machining H13 tool steel alloys at transition speed regime with emphasis on sustainable machining of the alloy. To achieve this, end milling tests were performed on AISI H13 steel alloy (192 BHN) on a MIKRON HSM 400 high speed machining centre using milling inserts. After each cutting pass, the milling insert was removed for tool wear measurement on the digital microscope. The electrical power consumed was measured with the Fluke 435 power clamp meter mounted on the three phase cable at the back of the machine. It was discovered that MQL has a promising advantage in terms of tool life with 25 minutes of machining, net power requirement of 10% when compared to dry cutting, and environmental benefits when machining H13 tool steel alloy. This work is fundamentally important in assessing the environmental credentials and resource efficiency regime for green machining of H13 tool steel alloysKeywords— H13 tool steel, green machining, process optimization, tool life, cutting environments, energy consumption 


Author(s):  
Samir B. Billatos ◽  
Nadia A. Basaly

Abstract In high speed machining, the generated heat produces very high temperatures at the tool-work interface. Heat generated at the cutting area may shorten tool life, damage work piece surface, affect surface characteristics, and hence increase production cost. To deal with these problems, cutting fluids are used. Unfortunately, these fluids cause harmful effects to the operators and serious problems of pollution to the environment. Therefore, a new approach is developed to reduce the cutting tool temperature without using external coolants, and thus considerably reduce the amount of the hazardous waste being disposed to the environment. It removes a portion of the generated heat from the tool-work interface by flowing water in a closed cooling cycle system. The approach was analyzed and verified using Finite Element Analysis. Results were compared to the dry and wet cutting cases obtained from literature, and it was found that temperatures on the flank and rake faces of the tool can be lowered, and the overheated area of the tool tip, and consequently its wear, can be reduced significantly.


2010 ◽  
Vol 44-47 ◽  
pp. 280-283
Author(s):  
Zhen Yu Zhao ◽  
Li Xin Huang ◽  
Yong Shan Xiao ◽  
Bai Liu

In the manufacturing industry, high speed milling plays a very important role. The paper introduced a number of essential core component of the key technologies in high speed machining center such as powerful computer numerical control systems, motion control card, post –processing method, processed trajectory control technology (Look Ahead) and high speed processing of programming. The speed control, post processing and look-ahead control are focused on considering, and the corresponding improved methods are brought forward.


2011 ◽  
Vol 341-342 ◽  
pp. 318-322
Author(s):  
Yong Xiang Gao

During the high-speed machining, cutter path of numerical control needs to satisfy the following requirements. There has no colliding among work pieces, fixtures and so on. The cutter path variation cannot too dramatically and the vibration should in the controlled area during the process. Feed speed can modify with path curvature variation and cutting depth need to be equality. This article will analyze and research in the mode of cutter advanced and retreats, cutter movement mode, cutter feed mode and cutter path of corner treatment during the high-speed process programming that could effective optimize cutter path, process efficiency and quality.


Author(s):  
Marcelo Ferreira Batista ◽  
Alessandro Roger Rodrigues ◽  
Reginaldo Teixeira Coelho

Cusps and scallops of hardened steel moulds produced by high-speed milling using a ball-nose end mill were mathematically modelled, characterised by microscopy and experimentally validated. The experimental results show that the part material is crushed or ploughed near the cutter centre, where the cutting speed is very low. This kinematic singularity, associated with tool feed, compresses and bends the ball-nose end mill axially. Because of this double effect, the end mill marks on the part at the end of the milling path cause surface damage and dimensional errors to the hardened mould. A mathematical model may predict the formation of the cusps and scallops and be of use in computer numerical control or computer-aided manufacturing programming to obtain the desired part topography.


Author(s):  
J. E. Halley ◽  
A. M. Helvey ◽  
K. S. Smith ◽  
W. R. Winfough

Abstract Recently, several new machining techniques have been developed which have driven dramatic changes in the manufacture of aerospace components with thin ribs and webs. There are many such components in commercial and military aircraft, and until recently these components we fabricated as sheet metal assemblies. Through an improved understanding of the dynamic interaction between the tool and workpiece, it has now become economically competitive to create components with thin ribs and webs as monolithic units machined from a solid block by milling. Ribs are those thin structures created at the periphery of the end mill, as opposed to webs, which are the thin structures created at the face of the end mill. It is easy to see that as the ribs and webs become thinner, the stiffnesses will decrease, and chatter will become more problematic. Chatter during the machining of such parts can result in damage to the part (even cutting through the thin structure) or at least poor surfaces which require hand finishing. This paper outlines the basic technology required to produce these kinds of components efficiently, and cites several examples.


Sign in / Sign up

Export Citation Format

Share Document