Quasi-Static Flexural and Tensile Behavior of Glass Fiber Reinforced Polymer

2013 ◽  
Vol 845 ◽  
pp. 302-305
Author(s):  
Syed Azwan ◽  
Behzad Abdi ◽  
Yahya Mohd Yazid ◽  
Ayob Amran

In this paper, glass fiber reinforce polymer subject to quasi-static three point bending loading and tensile loading was studied experimentally. Glass fiber reinforced made of chopped strand mat (CSM) were used in this study. Several samples were prepared and tested by using Instron universal testing machine at different strain rate including 1mm/min, 10mm/min and 100mm/min and all of the tests were repeated three times in order to minimize experimental error and the average of the obtained results were used for further analysis. The load-extension curves and stress-strain curve of glass fiber reinforce subject to three point bending and tensile loading test were determined at different strain rate and the obtained results were compared together. As results of this study, it has found that the strain rate has effect on flexural and tensile behavior of glass fiber reinforce.

2019 ◽  
Vol 54 (11) ◽  
pp. 1385-1402 ◽  
Author(s):  
Yldeney Silva Domingos ◽  
Renata Carla Tavares dos Santos Felipe ◽  
Raimundo Nonato Barbosa Felipe ◽  
Glauber José Turolla Fernandes

This paper presents an evaluation of the mechanical and physical behavior of the type E glass fiber-reinforced polymeric composite when exposed to environmental aging agents in an effluent treatment plant. The composite was made by the hand layup process, and the test bodies were made according to the American Society for Testing and Materials standards D3039-14 and D790-10 for the uniaxial tensile and three-point bending tests, respectively, where they were exposed for a period of eight months, conditioned above and immersed in the effluent of the treatment plant. The physicochemical characterization of the effluent was evaluated considering the following parameters: pH, conductivity, sulfate, alkalinity, acidity, sulfide, and temperature, aiming to characterize the effluent conditions in direct and indirect contact with the composite. After the exposure period, tests were carried out for morphological evaluation, structural integrity evaluation, mechanical performance evaluation, and fracture characterization of the polymer composite, thereby leading to a comparison of the mechanical characteristics in the original state to that of the aged state (after exposure in the effluent treatment plant). The polymeric composite studied was stable after the aging period, with little mass variation, less than 0.5%, and slight changes in color. The mechanical properties evaluated also did not change significantly during the study period. Variations in uniaxial tensile strength were less than 1.4% and for three-point bending less than 10%, thus showing that the type E glass fiber-reinforced polymer composite has potential for use in harsh environments such as in effluent treatment plants.


2018 ◽  
Vol 53 (6) ◽  
pp. 709-718 ◽  
Author(s):  
Moustafa Mahmoud Yousry Zaghloul ◽  
Yasser S Mohamed ◽  
Hassan El-Gamal

The development of studying nanocomposites has grown up rapidly in the last decade. The objective of the current research is to study the influence of incorporating cellulose nanocrystals on the mechanical properties of polyester resins, as well as to develop continuous filament e-glass fiber-reinforced polyester nanocomposites, which combine traditional composites with the added advantages of nanocomposites. Cellulose nanocrystals were uniformly dispersed into the polyester resin by an ultrasonic processor. The incorporation and dispersion of cellulose nanocrystals were a state-of-the-art method aimed at overcoming poor dispersion problems at low weight fractions of nanoparticles. Three weight percentages of cellulose nanocrystals were prepared, which were 2%, 4% and 6%. Fatigue and tensile specimens were manufactured by resin transfer molding process. Cellulose nanocrystals were fully characterized by using X-ray diffraction, transmission electron microscopy, Fourier-transform infrared spectroscopy and zeta-sizer analysis. The optimum incorporation percentage of cellulose nanocrystals was used to prepare glass fiber-reinforced polyester specimens containing cellulose nanocrystals. Tensile and fatigue behaviors of glass fiber-reinforced polyester composites were evaluated by means of universal testing machine and rotating bending fatigue machine. A series of testing specimens for each property was examined in accordance with the corresponding ASTM and JIS standards. The experimental results showed that the addition of 4% cellulose nanocrystals to polyester matrix lead to the optimum tensile and fatigue properties. Mechanical properties were improved through the enhanced material design and proper selection of compatible nanoparticles, and adding cellulose nanocrystals in a weight fraction that does not affect the mechanical properties of glass fiber-reinforced polyester nanocomposites negatively. The presented design of material and geometry have shown promising results for wide range of applications, particularly in biomedical industry, energy and electronics.


Author(s):  
Chi-Seung Lee ◽  
Myung-Sung Kim ◽  
Kwang-Ho Choi ◽  
Myung-Hyun Kim ◽  
Jae-Myung Lee

In the present study, the material characteristics of a glass fiber-reinforced polyurethane foam (RPUF) which is widely adopted to a liquefied natural gas (LNG) insulation system was investigated by a series of compressive tests under room and cryogenic temperatures. In addition, a temperature- and strain rate-dependent constitutive model was proposed to describe the material nonlinear behavior such as increase of yield stress and plateau according to temperature and strain rate variations. The elasto-viscoplastic model was transformed to an implicit form, and was implemented into the ABAQUS user-defined subroutine, namely, UMAT. Through a number of simulation using the developed subroutine, the various stress-strain relationships of RPUF were numerically predicted, and the material parameters associated with the constitutive model were identified. In order to validate the proposed method, the computational results were compared to a series of test of RPUF.


2015 ◽  
Vol 84 ◽  
pp. 163-172 ◽  
Author(s):  
Chi-Seung Lee ◽  
Myung-Sung Kim ◽  
Seong-Bo Park ◽  
Jeong-Hyeon Kim ◽  
Chang-Seon Bang ◽  
...  

Author(s):  
Ashkan Farazin ◽  
Afrasyab Khan

Fiber-reinforced polymer-based composites may experience various strain rates under different dynamic loads. As the mechanical behavior of these composites varies with strain rate, their response will be dependent on the strain rate. This paper presents a comprehensive review on glass fibers and composites reinforced with these fibers, as the most practical polymer-based composite, under dynamic loading. First, the properties of long glass fibers under different strain rates will be reviewed in detail. In the following, experimental studies on the effects of strain rate on various types of glass fiber-reinforced polymer-based composites will be categorized and presented. The behavior of thermoset polymers will be also addressed under different strain rates. Finally, various analytical and numerical macromechanical and micromechanical models will be comprehensively described for this type of composites.


2015 ◽  
Vol 766-767 ◽  
pp. 193-198 ◽  
Author(s):  
T. Rajmohan ◽  
K. Mohan ◽  
K. Palanikumar

Natural Fiber Reinforced Composite (NFRC) are used by replacing Synthetic Fiber Reinforced Composites (SFRC) because of its poor reusability, recycling, bio degradability. Even though NFRC are lack in thermal stability, strength degradation, water absorption and poor impact properties. The hybridization and nanoparticles mixed in different polymers are used to improve mechanical and wear properties of the polymer composites. In the present investigation Multi wall carbon nanotubes (MWCNT) dispersed in Epoxy resin using ultrasonic bath sonicator are used as matrix face for hybrid banana-Glass Fiber Reinforced Plastics composite materials which is manufactured by compression molding processes. As per ASTM standards tensile, compression tests are carried out by using Universal Testing Machine. Microstructure of samples are investigated by scanning electron microscope (SEM) with Energy dispersive X-ray (EDS). SEM shows the homogeneous distribution of the fiber in the modified polymer matrix. The results indicated that the increase in weight % of MWCNT improves the mechanical properties of MWCNT filled hybrid natural fiber composites.


Sign in / Sign up

Export Citation Format

Share Document