scholarly journals Hot Deformation Behavior of Novel Al-Cu-Y(Er)-Mg-Mn-Zr Alloys

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1521
Author(s):  
Maxim G. Khomutov ◽  
Sayed M. Amer ◽  
Ruslan Yu. Barkov ◽  
Maria V. Glavatskikh ◽  
Alexander Yu. Churyumov ◽  
...  

The compression tests in a temperature range of 400–540 °C and strain rates of 0.1–15 s−1 were applied to novel Al-Cu-Y(Er)-Mg-Mn-Zr alloys to investigate their hot deformation behavior. The higher volume fraction of the intermetallic particles with a size of 0.5–4 µm in the alloys caused an increase in flow stress. Hyperbolic sine law constitutive models were constructed for the hot deformation behavior of Al-Cu-Y(Er)-Mg-Mn-Zr alloys. Effective activation energy has a higher value in the alloys with Er than in the alloys with Y. According to the processing maps, the temperature range of 420–480 °C and strain rates higher than 5 s−1 are the most unfavorable region for hot deformation for the investigated alloys. The deformation at 440 °C and 15 s−1 led to cracks on the surface of the sample. However, internal cracks were not observed in the microstructure after deformation. The optimum hot deformation temperatures were in a range of 500–540 °C and at strain rates of 0.1–15 s−1.

2020 ◽  
Vol 118 (1) ◽  
pp. 107
Author(s):  
Maryam Kamali Ardakani ◽  
Maryam Morakabati

The hot deformation behavior of a H10 hot work tool steel was studied by performing hot compression tests over the temperature range of 900 to 1200 °C and strain rates of 0.001–1 s−1 and total strain of 0.7. At temperatures below 1100 °C, the grain size is fine and below 20 μm. In this temperature range, grain size increase with temperature due to dissolution of carbides. Then by increasing temperature to 1150 and 1200 °C, the grain size is increased significantly due to growth of grains. The study on the effect of strain rate showed that at constant temperature of 1000 °C, the grain size increased from 4.8 to 6 μm with increasing strain rate from 0.001 to 1 s−1. Also, this increase in the strain rate at temperature of 1100 °C lead to increase the grain size from 5.9 to 17 μm, due to the occurrence of dynamic recrystallization. At 1200 °C growth of grains causes to decrease grain size from 112 to 87 μm by increasing strain rate. According to the microstructural investigations, at the temperatures of 1000 and 1100 °C and strain rates of 0.01 and 0.1 s−1 dynamic recrystallization was the main softening mechanism. As a result, the most suitable range for hot deformation was obtained at the temperature range of 1000–1100 °C and strain rates of 0.01–0.1 s−1.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1020 ◽  
Author(s):  
Kristina Kittner ◽  
Madlen Ullmann ◽  
Thorsten Henseler ◽  
Rudolf Kawalla ◽  
Ulrich Prahl

In the present work, the microstructure, texture, mechanical properties as well as hot deformation behavior of a Mg-2Zn-1Al-0.3Ca sheet manufactured by twin roll casting were investigated. The twin roll cast state reveals a dendritic microstructure with intermetallic compounds predominantly located in the interdendritic areas. The twin roll cast samples were annealed at 420 °C for 2 h followed by plane strain compression tests in order to study the hardening and softening behavior. Annealing treatment leads to the formation of a grain structure, consisting of equiaxed grains with an average diameter of approximately 19 µm. The twin roll cast state reveals a typical basal texture and the annealed state shows a weakened texture, by spreading basal poles along the transverse direction. The twin roll cast Mg-2Zn-1Al-0.3Ca alloy offers a good ultimate tensile strength of 240 MPa. The course of the flow curves indicate that dynamic recrystallization occurs during hot deformation. For the validity range from 250 °C to 450 °C as well as equivalent logarithmic strain rates from 0.01 s−1 to 10 s−1 calculated model coefficients are shown. The average activation energy for plastic flow of the twin roll cast and annealed Mg-2Zn-1Al-0.3Ca alloy amounts to 180.5 kJ/mol. The processing map reveals one domain with flow instability at temperatures above 370 °C and strain rates ranging from 3 s−1 to 10 s−1. Under these forming conditions, intergranular cracks arose and grew along the grain boundaries.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1940 ◽  
Author(s):  
Jianmei Kang ◽  
Yuhui Wang ◽  
Zhimeng Wang ◽  
Yiming Zhao ◽  
Yan Peng ◽  
...  

Hot deformation behavior of Fe-30Mn-0.11C steel was investigated. Hot compression tests were carried out at various temperatures ranging from 800 °C to 1200 °C and at different strain rates of 0.01 s−1 to 10 s−1. The constitutive equation based on peak stress was established. Hot processing maps at different strains and recrystallization diagrams were also established and analyzed. The results show that dynamic recrystallization easily occur at high deformation temperatures and low strain rates. Safe and unstable zones are determined at the true strain of 0.6 and 0.7, and the hot deformation process parameters of partial dynamic recrystallization of the tested steel are also obtained.


2018 ◽  
Vol 941 ◽  
pp. 458-467
Author(s):  
Nima Safara Nosar ◽  
Fredrik Sandberg ◽  
Göran Engberg

The behavior of a 13% chromium steel subjected to hot deformation has been studied by performing hot compression tests in the temperature range of 850 to 12000C and at strain rates from 0.01 to 10 s-1. The uniaxial hot compression tests were performed on a Gleeble thermo-mechanical simulator. The best function that fits the peak stress for the material and its relation to the Zener-Hollomon parameter (Z) is derived. The average activation energy of this alloy in the entire test domain was found to be about 557 [kJmol-1] and the dynamic recrystallization (DRX) kinetics was studied to find the fraction DRX during deformation.


2014 ◽  
Vol 788 ◽  
pp. 45-51
Author(s):  
Yong Biao Yang ◽  
Zhi Min Zhang ◽  
Feng Li Ren ◽  
Qiang Wang

The elevated temperature flow stress behavior of Mg-9Gd-2.5Y-1Nd-0.5Zr magnesium alloy was carried out by Gleeble-1500 thermal mechanical simulator in the temperature range of 460-520°C and in strain rates of 0.0005~1s-1 at a strain of 0.6. The optical microscopy was used for microstructure characterization. The results showed that the flow stress increases with increasing strain rates and decreasing temperature. All the deformed magnesium alloy specimens show a dynamic recovery characters in the temperature range from 460~500°C, and show dynamic recrystallization characters at 520°C. The flow stress of this alloy can be represented by Zener-Hollomon parameter function, and values of related parameters A, α and n, are 2.24×1013s-1、0.027MPa-1 and 2.93, respectively. Its activation energy for hot deformation Q is 212.6kJ/mol.


2015 ◽  
Vol 34 (6) ◽  
Author(s):  
Xiaolan Han ◽  
Shengdun Zhao ◽  
Chenyang Zhang ◽  
Shuqin Fan ◽  
Fan Xu

AbstractIn order to develop reliable constitutive equations for the simulation, the hot deformation behavior of FV520B steel was investigated through isothermal compression tests in a wide range of temperatures from 900 °C to 1100 °C at an interval of 50 °C and strain rate from 0.01 to 10 s


Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 766
Author(s):  
Wang ◽  
Wang ◽  
Zhu ◽  
Xu ◽  
Cui ◽  
...  

The effect of V addition on the hot deformation behavior of AA5083 was investigated. Single axial compression tests were conducted on the cast and homogenized samples with strain rates ranging from 0.01 to 10 s−1 and deformation temperatures ranging from 300 to 450 °C. The results showed that the contents of V (0–0.10, in wt.%) do not change the grain size of alloy 5083 significantly in the as cast and homogenized conditions, but the formation of fine Al3V particles in the alloy with an addition of 0.05 wt.% V can increase the flow stress, and its activation energy is 10.0% higher than that of V-free alloy 5083. The processing maps show that the appropriate process domain for alloy 5083 with 0.05 wt.% V changes at different true strains. The mechanism for deformation softening is discussed as well.


2013 ◽  
Vol 815 ◽  
pp. 37-42 ◽  
Author(s):  
Yu Juan Guo ◽  
Lei Deng ◽  
Xin Yun Wang ◽  
Jun Song Jin ◽  
Wen Wu Zhou

The hot deformation behavior of 7050aluminum alloy was investigated by hot compression tests in the temperature range of 573-773K and the strain rate ranging from 0.001s-1to 10 s-1.The flow curves showed that the flow stresses increase with the increase of strain rate or the decrease of temperature.In order to determine the optimal processing conditions, hot processing maps were established based on experimental data and Dynamic Materials Model. The processing maps indicate that instability occur at low temperature and high strain rate. The optimum hot working region is the domain in the temperature range of 673-723K and strain rate range of 0.001-0.01 s-1,where typical recrystallization was observed in the optical microstructures.


2015 ◽  
Vol 651-653 ◽  
pp. 120-125 ◽  
Author(s):  
Katharina Steineder ◽  
Martina Dikovits ◽  
Coline Beal ◽  
Christof Sommitsch ◽  
Daniel Krizan ◽  
...  

Medium-Mn steels are one of the promising candidates to achieve the desired mechanical properties in the 3rd generation of cold rolled advanced high strength steels (AHSS) for automotive applications. Their duplex microstructure consists of a ferritic matrix with a substantial amount of metastable retained austenite, which transforms to strain-induced martensite upon forming. This strengthening mechanism, well known as the TRansformation Induced Plasticity (TRIP) effect, provides the steel an excellent combination of high strength and elongation with a product of RmxA80 up to 30.000 MPa%. As hot rolling is one of the crucial steps during their production, the hot deformation behavior of Medium-Mn steels has to be thoroughly evaluated during their development stage.Therefore, the present contribution studied the hot deformation response of a 0.1 %C 5.5 %Mn steel by means of hot compression tests using a Gleeble® 3800 device. The influence of different deformation temperatures (900-1100 °C) and strain rates (0.1-10 s-1) on the stress-strain behavior was investigated. The flow curves were analyzed and corrected by the effects of adiabatic heating.Furthermore, the strain rate sensitivity m of the material was determined by evaluating stress values at different strain rates for given temperatures and strains. The m-values can be used to predict the deformation behavior of the material within the investigated range of parameters.Lastly, the hot working behavior of an alternative steel concept for a 3rd Generation AHSS with significantly lower Mn-content was comparatively investigated.


2014 ◽  
Vol 900 ◽  
pp. 588-591
Author(s):  
Gang Chen ◽  
Wei Chen ◽  
Guo Wei Zhang ◽  
Jing Zhai ◽  
Li Ma ◽  
...  

The deformation behavior and constitutive equation of Mg-4Al-3Ca-1.5Zn-1Nd-0.2Mn alloy were investigated using hot compression tests at the temperatures range of 200, 250, 300, and 350°C with the constant strain rates of 0.001, 0.01, 0.1 And1 s-1. The influence of strain was also incorporated in the constitutive equation by considering the effects of strain on material constants which are consist of A, α, β, n and activation energy Q. The predicted flow stress curves using the proposed constitutive equations well agree with the experimental results of the flow stress for experimental Alloy.


Sign in / Sign up

Export Citation Format

Share Document