Analysis of Energy Distribution for Digital Electronic Detonator Blasting

2013 ◽  
Vol 850-851 ◽  
pp. 332-337
Author(s):  
Wei Feng Cheng ◽  
Zhen Yu Wang ◽  
Yin Lu Chen ◽  
Guo Hua Liu

Excavation blasting has a great impact on the buildings, therefore, it is important to control blasting vibrations. In this paper, based on the time-energy density analysis and wavelet packet analysis for measured data of blasting vibrations, some useful results can be concluded. Firstly, the energy of Millisecond Detonator Blasting (MDB) vibration signals in the 0~200Hz band accounts for 90.06% of the total energy, and its advantage energy mainly distribute in low-frequency band. However, the energy of Digital Electronic Detonator Blasting (DEDB) vibration signals in the 0~600Hz band is 96.08% of the total energy, its advantage energy mainly distribute in wider band. Moreover, the time-energy density curve of DEDB doesnt have the abrupt and separated fluctuation, which indicates the interference and superposition of DEDB are very distinct. The controlled DEDBs and tunnel support measures of this project have achieved a good effect. The comprehensive benefits are remarkable and it has an important significance for improving the level of blasting technology.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ke Man ◽  
Xiaoli Liu ◽  
Zhifei Song

Based on the blasting principle of the cutting seam cartridge, smooth blasting with the charge structures of the usual cartridge and cutting seam cartridge has been designed and implemented, respectively, for different peripheral holes in the same face. Meanwhile, the blasting vibration has been monitored. Through the analysis of the frequency spectrum of blasting vibration signals, it is found that the maximum blasting vibration velocity of the cutting seam cartridge charge is lower than that of the usual cartridge charge, from 0.21 m/s to 0.12 m/s. Moreover, the blasting energy distribution is more balanced. Especially in the low-frequency part, the blasting energy is less, and there is a transferring trend to the high-frequency part, which shows that the cutting seam cartridge charge has a better optimization effect. Furthermore, using wavelet packet analysis, the cutting seam cartridge charge could effectively reduce the energy concentration in the low-frequency part. The energy distribution is much more dispersed, and the disturbance to the structure could be less, which is conducive to the stability of the structure. According to the blasting effect, the overbreak and underexcavation quantity at the cutting seam cartridge charge is better than that at the usual cartridge charge.


2007 ◽  
Vol 561-565 ◽  
pp. 1823-1826 ◽  
Author(s):  
Y. Shinzato ◽  
Yuki Saito ◽  
Hiroshi Yukawa ◽  
Masahiko Morinaga ◽  
Takeshi Baba ◽  
...  

A new expression for the chemical bond in perovskite-type oxides is proposed based on the atomization energy concept. The atomization energies, Eo for oxygen atom and EM for metal atom in each oxide are evaluated theoretically using the energy density analysis of the total energy, and the 9EO vs. 9EM diagram called atomization energy diagram, is constructed. Every oxide can be located on the atomization energy diagram, although there are significant differences in the nature of the chemical bond among the oxides.


2013 ◽  
Vol 321-324 ◽  
pp. 1284-1289
Author(s):  
Dong Tao Li ◽  
Li Xin Xu ◽  
Yuan Yuan Sun ◽  
Qiu Rui Jia ◽  
Jing Long Yan

It is conducive to reducedamage of blasting vibration to realize energy distribution and attenuation lawof single-hole blasting vibration signal. With the measured single-holeblasting vibration velocity curves, used wavelet packet analysis technologywith high-resolution character, the law of energy distribution of single-holeblasting vibration signals in different frequency bands, and the effect ofblasting source and distance from the source on single-hole blasting vibrationsignal energy distribution were analysised. The results show that the energy ofsingle-hole blasting vibration signals attenuation very quickly in thefrequency domain concentration distribution in 0~100Hz; and distance from thesource has significant influence on energy distribution in the frequencydomain; The energy is mainly distributed in the low frequency band whendistance from the source is larger, which has guiding significance inmitigation of blast-induced vibrations.


2020 ◽  
Vol E103.C (11) ◽  
pp. 588-596
Author(s):  
Masamune NOMURA ◽  
Yuki NAKAMURA ◽  
Hiroo TARAO ◽  
Amane TAKEI

Author(s):  
Congshan Li ◽  
Ping He ◽  
Feng Wang ◽  
Cunxiang Yang ◽  
Yukun Tao ◽  
...  

Background: A novel fault location method of HVDC transmission line based on a concentric relaxation principle is proposed in this paper. Methods: Due to the different position of fault, the instantaneous energy measured from rectifier and inverter are different, and the ratio k between them is the relationship to the fault location d. Through the analysis of amplitude-frequency characteristics, we found that the wave attenuation characteristic of low frequency in the traveling wave is stable, and the amplitude of energy is larger, so we get the instantaneous energy ratio by using the low-frequency data. By using the method of wavelet packet decomposition, the voltage traveling wave signal was decomposed. Results: Finally, calculate the value k. By using the data fitting, the relative function of k and d can be got, that is the fault location function. Conclusion: After an exhaustive evaluation process considering different fault locations, fault resistances, and noise on the unipolar DC transmission system, four-machine two-area AC/DC parallel system, and an actual complex grid, the method presented here showed a very accurate and robust behavior.


Author(s):  
W B Xiao ◽  
J Chen ◽  
G M Dong ◽  
Y Zhou ◽  
Z Y Wang

This paper presents a novel multichannel fusion approach based on coupled hidden Markov models (CHMMs) for rolling element bearing fault diagnosis. Different from a hidden Markov model (HMM), a CHMM contains multiple state sequences and observation sequences, and hence has powerful potential for multichannel fusion. In this study, a two-chain CHMM is employed to integrate the two-channel vibration signals collected from bearings, i.e. the horizontal and vertical vibration signals. Efficient probabilistic inference and parameter estimation algorithms are developed for the model. An experiment was carried out to validate the proposed approach. Normalized wavelet packet energy and wavelet packet energy entropy are extracted as features for classification respectively. Then, the results of the proposed approach are compared with those of the currently used approach based on HMMs and one-channel signals. The results show that the proposed approach is feasible and effective to improve the classification rate.


2011 ◽  
Vol 403-408 ◽  
pp. 1817-1822
Author(s):  
Xi Feng Zhou ◽  
Xiao Wu ◽  
Qian Gang Guo

The quality of ultrasonic flaw echo signal is the foundation of achieving qualitative and quantitative analysis in the in ultrasonic flaw detection. In practice, the flaw echo signals are often contaminated or even annihilation by random noise. According to the characteristics of ultrasonic flaw echo signal, wavelet packet has more accurate local analysis ability in low frequency and high frequency part. This paper discusses de-noising in ultrasonic signals based on wavelet packet analysis, and proposes an improved threshold approach for de-noising. The results show that: It remarkably raises the signal-to-noise ratio of ultrasonic flaw echo signal and improves the quality of signal with improved wavelet packet threshold.


2011 ◽  
Vol 130-134 ◽  
pp. 1681-1685 ◽  
Author(s):  
Guang Tian ◽  
Hao Tian ◽  
Guang Sheng Liu ◽  
Jin Hui Zhao ◽  
Li Ping Luo

The diagnosis of compound-fault is always a difficult point, and there is not an effective method in equipment diagnosis field, then a new method of compound-fault diagnosis was presented. The vibration signals at start-up in the gearbox are non-stationary signals, and traditional ways of diagnosis have low precision. Order tracking and wavelet packet and rough sets theory are introduced in the compound-fault diagnosis of bearing. First, the vibration signals at start-up were resampled using computer order tracking arithmetic and equal angle distributed vibration signals were obtained, and wavelet packet has been used for equal angle distributed vibration signals decomposition and reconstruction. Then, energy distribution of every frequency band can be calculated according to normalization process. A new feature vector can be obtained, then clear and concise decision rules can be obtained by rough sets theory. Finally, the result of compound-fault example proves that the proposed method has high validity and more amplitude appliance foreground.


Sign in / Sign up

Export Citation Format

Share Document