Charge Trapping in Hafnium Silicate Films with Modulated Composition and Enhanced Permittivity

2013 ◽  
Vol 854 ◽  
pp. 125-133 ◽  
Author(s):  
Larysa Khomenkova ◽  
Xavier Portier ◽  
Abdelilah Slaoui ◽  
Fabrice Gourbilleau

Hafnium silicate dielectric films were fabricated by radio frequency magnetron sputtering. Their microstructure and electrical properties were studied versus annealing treatment. The evolution of microstructure and the formation of alternated HfO2-rich and SiO2-rich layers were observed and explained by surface directed spinodal decomposition. The stable tetragonal HfO2 phase was formed upon an annealing at 1000-1100°C. The control of annealing temperature allowed the memory window to be achieved and to be tuned as well as the dielectric constant to be enhanced.

2013 ◽  
Vol 1617 ◽  
pp. 69-74
Author(s):  
L. Khomenkova ◽  
X. Portier ◽  
F. Gourbilleau ◽  
A.Slaoui

ABSTRACTMicrostructral and charge-trap properties of single Hf-silicate dielectric films are presented versus annealing treatment. The as-grown films were found to be homogeneous and amorphous. It is shown that annealing treatment results in the formation of alternated Hf-rich and Si-rich layers. The mechanism responsible for this phenomenon is found to be surface directed spinodal decomposition. The increase of annealing temperature up to 1000-1100°C resulted in the crystallization of Hf-rich phase. The stability of its tetragonal phase caused an enhancement of film permittivity was observed. The evolution of charge trapping properties of the films results in the memory effect which nature was discussed.


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 373
Author(s):  
Wen-Yen Lin ◽  
Feng-Tsun Chien ◽  
Hsien-Chin Chiu ◽  
Jinn-Kong Sheu ◽  
Kuang-Po Hsueh

Zirconium-doped MgxZn1−xO (Zr-doped MZO) mixed-oxide films were investigated, and the temperature sensitivity of their electric and optical properties was characterized. Zr-doped MZO films were deposited through radio-frequency magnetron sputtering using a 4-inch ZnO/MgO/ZrO2 (75/20/5 wt%) target. Hall measurement, X-ray diffraction (XRD), transmittance, and X-ray photoelectron spectroscopy (XPS) data were obtained. The lowest sheet resistance, highest mobility, and highest concentration were 1.30 × 103 Ω/sq, 4.46 cm2/Vs, and 7.28 × 1019 cm−3, respectively. The XRD spectra of the as-grown and annealed Zr-doped MZO films contained MgxZn1−xO(002) and ZrO2(200) coupled with Mg(OH)2(101) at 34.49°, 34.88°, and 38.017°, respectively. The intensity of the XRD peak near 34.88° decreased with temperature because the films that segregated Zr4+ from ZrO2(200) increased. The absorption edges of the films were at approximately 348 nm under 80% transmittance because of the Mg content. XPS revealed that the amount of Zr4+ increased with the annealing temperature. Zr is a potentially promising double donor, providing up to two extra free electrons per ion when used in place of Zn2+.


2019 ◽  
Vol 14 (1) ◽  
pp. 53-63 ◽  
Author(s):  
M. S. Bashar ◽  
Rummana Matin ◽  
Munira Sultana ◽  
Ayesha Siddika ◽  
M. Rahaman ◽  
...  

AbstractThe ZnS thin films have been deposited by radio frequency magnetron sputtering at room temperature. Post-deposition rapid thermal annealing treatment was done for the films deposited at different powers ranging from 70 to 100 W. One peak is observed for as-deposited and annealed thin films at around 28.48° corresponding to the (111) reflection plane indicating a zincblende structure. The overall intensity of the peaks and the FWHM values of as-deposited films increased after annealing corresponding to the increase in crystallinity. The optical energy bandgap is found in the range of 3.24–3.32 eV. With increasing annealing temperature, the decrease in the Urbach energy values indicating a decrease in localized states which is in good agreement with the XRD results where the crystallinity increased. The surface morphology of the films seems to be composed of Nano-granules with a compact arrangement. Apparently, the grain size increases in the deposited films as annealing temperature increases. The compositional ratio attained close to the stoichiometric ratio of 1:1 after annealing. From the Hall effect measurement, the carrier concentration and mobility are found to increase after annealing. The high carrier concentration and mobility also comply with structural and optical analysis. Best results are found for the film annealed at 400 °C deposited at 90 W.


Sign in / Sign up

Export Citation Format

Share Document