Acid Light Yellow Removal from Wastewater Using Peanut Shell-Based Activated Carbon

2013 ◽  
Vol 864-867 ◽  
pp. 1694-1698 ◽  
Author(s):  
Lin Zhi Zhai ◽  
Gang Li

Peanut shell-based activated carbon was prepared by 60% zinc chloride activation. The activation temperature was 923K and activation time was 90min. The activated carbon was applied on the removal of acid light yellow from wastewater. The effects of the amount of adsorbent, the initial dye concentration and pH value of solution were investigated. The results showed that the optimum conditions for dye removal: activated carbon dosage of 2.5g/L, initial dye concentration of 50mg/L, pH value of 3. The color removal efficiency attained above 95%. It is concluded that activated carbon developed from peanut shell could be effective and practical for utilizing in dye wastewater treatment.

2012 ◽  
Vol 184-185 ◽  
pp. 1110-1113 ◽  
Author(s):  
Li Fen He ◽  
Qi Xia Liu ◽  
Tao Ji ◽  
Qiang Gao

Various jute-based activated carbon fibers were prepared by using jute fibers as raw materials and phosphoric acid as activating agent. The effects of three main factors such as concentration of activating agent, activation temperature and activation time on the yield and adsorptive properties of active carbon fibers were investigated via orthogonal experiments. The surface physical morphology of jute-based activated carbon fiber was also observed by using Scanning Electron Microscope. Results showed that the optimum conditions were phosphoric acid concentration of 4 mol/L, activation temperature of 600 °C and activation time of 1h. The yield, iodine number and amount of methylene blue adsorption of the active carbon fiber prepared under optimum conditions were 37.99 %, 1208.87 mg/g and 374.65 mg/g, respectively.


2010 ◽  
Vol 129-131 ◽  
pp. 1151-1155 ◽  
Author(s):  
Xiao Juan Jin ◽  
Zhi Ming Yu ◽  
Zhe Ren ◽  
Xin Liu

Activated carbons were prepared through chemical activation of waste particle board (WPB) precursor using potassium hydroxide as the chemical agent. The effects of different parameters, such as chemical/WPB ratio, activation time and activation temperature on yield and the methylene blue adsorption capacity of activated carbon were investigated. Experimental results indicated that the optimum conditions were as follow: activation temperature 850°C, KOH(50% concentration)/ WPB 4.0, activation time 50 min. Amount of methylene blue adsorption, Iodine number and the yield of activated carbon prepared under optimum conditions were 15.0 mL/0.lg, 1213mg/g and 36.9%, respectively. Therefore, great potential exists for developing activated carbon products from waste wood, which will have the positive effects of reducing our landfill problem and gain attractive products.


2015 ◽  
Vol 1113 ◽  
pp. 422-427
Author(s):  
Sethupathi Sumathi ◽  
Wei Liang Chong ◽  
Mohamed J.K. Bashir ◽  
Choon Aun Ng ◽  
Kanthasamy Ramesh

The conversion of sea mango oil into non-edible feedstock for biodiesel will lead to the production of abundant sea mango biomass as waste. Thus in this study, the potential of converting sea mango fiber waste into a value added product was analyzed. Sea mango fiber was utilized to produce activated carbon and was tested on dye removal. The sea mango activated carbon (SMAC) was prepared using physical activation by carbon dioxide. The preparation was carried out by varying the activation temperature (600-900 °C), gas flow rate (50–300 ml/min) and activation time (1.0-2.5 h). The parameters are manipulated using Design of Experiment. The prepared activated carbon was tested on methylene blue dye. SMAC was characterized by SEM, FTIR and BET surface area. Results showed that activation temperature and time have significant effect on the characteristic of SMAC and removal of dye. The optimum conditions for preparing the SMAC having the highest dye removal were found to be activation temperature of 810 °C, 178 ml/min of carbon dioxide flow and 1.9 h of activation time. The results showed that the BET surface area and dye removal efficiency of the SMAC are 540 m2/g and 95.6 % respectively.


2010 ◽  
Vol 44-47 ◽  
pp. 2562-2568
Author(s):  
Wu Yu ◽  
Ming Yu Zhi ◽  
Xiao Juan Jin

Activated carbons were prepared from waste particle board (WPB) by K2CO3 activation. The effects of different parameters, such as chemical/WPB ratio, activation time and activation temperature on yield, the methylene blue adsorption, Iodine number of activated carbon were investigated. The optimum conditions were determined by the method of factor analysis and the orthogonal design as follows: activation temperature 900°C, K2CO3 (50% concentration)/ WPB 4.0, activation time 60 min. Amount of methylene blue adsorption, Iodine number, phenol adsorption, BET surface area and the yield of activated carbon prepared under optimum conditions were 82.5mg/g, 1234mg/g, 185mg/g, 1026m2/g and 30.4%, respectively.


2018 ◽  
Vol 152 ◽  
pp. 01008 ◽  
Author(s):  
Ho Nicholas Jian Hoong ◽  
Nurhazwani Ismail

The conventional process to treat dye wastewater is the physicochemical treatment such as coagulation, flocculation and adsorption process. A new approach has been demonstrated to treat Congo red dye wastewater, which is the adsorption-coagulation hybrid process. Natural coagulant extracted from Hibiscus sabdariffa seeds is used as the coagulant while activated carbon is used as the adsorbent in this case study. The objective of this experiment is to study the significant factors that will affect the efficiency of dye removal. Then, the optimum conditions for the hybrid process is determined using Respond Surface Methodology (RSM). The variables are pH, initial dye concentration, coagulant dosage and adsorbent dosage while the response of experiment is the dye removal percentage. A three-level and four-variable Box-Behnken design (BBD) is used for the RSM. A total of 27 sets of experimental results is required to determine the optimum conditions. Jar test is used to conduct the experiment with the addition of coagulant and adsorbent simultaneously. Based on the regression model analysis and ANOVA, the highly significant factors that contribute to the dye removal efficiency through adsorption-coagulation hybrid process are pH of solution and initial dye concentration. The RSM results shows that the optimised process parameters for adsorption-coagulation hybrid process with Hibiscus sabdariffa seeds as the coagulant and activated carbon as the adsorbent are pH 2, initial dye concentration of 385 ppm, coagulant dosage of 209 mg/L and adsorbent dosage of 150 mg/L. The dye removal reaches up to 96.67% under optimum parameters.


2013 ◽  
Vol 67 (2) ◽  
pp. 284-292 ◽  
Author(s):  
Wen-hong Li ◽  
Qin-yan Yue ◽  
Zuo-hao Ma ◽  
Bao-yu Gao ◽  
Yan-jie Li ◽  
...  

Sludge-based activated carbon (SAC) was prepared from paper mill sewage sludge by physical activation with steam for wastewater treatment in this study. The effects of preparation variables, including carbonization temperature, carbonization time, activation temperature and activation time, on iodine number and yield were investigated through orthogonal experiments. The influences of washing by deionized water and acid on the characteristics and adsorption capacities of SAC for phosphate, methylene blue and reactive red 24 were also studied. The results indicated that the optimal preparation conditions were: carbonization temperature of 350 °C, carbonization time of 40 min, activation temperature of 800 °C and activation time of 20 min. The characteristics and adsorption capacities of SAC were obviously different before and after washing, especially by acid. The surface area was improved and adsorption capacities for dyes increased after washing, while adsorption capacity for phosphate decreased. The maximum adsorption capacities provided strong evidence of the potential of SAC as an alternative adsorbent for wastewater treatment.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Pei-Hsing Huang ◽  
Hao-Hsiang Cheng ◽  
Sheau-Horng Lin

This study presents the fabrication of high-quality activated carbon (AC) from discarded coconut shells. The effects of experimental parameters such as activation temperature and activation time on the basic characteristics of AC, including charcoal yield, ash content, pH value, Brunauer-Emmett-Teller (BET) specific surface area, total pore volume, and iodine adsorption, are investigated. The results indicate that as the activation temperature and activation time increase, the charcoal yield of the AC decreases. In contrast, iodine adsorption, ash content, pH value, and total pore volume increase with activation temperature. The AC sample activated at 1000°C for 120 min had the highest BET specific surface area and total pore volume and thus the best CO2adsorption performance. This sample was compared with 30-mesh commercial AC. The results reveal that coconut-based AC has better instantaneous adsorption capabilities.


2013 ◽  
Vol 68 (7) ◽  
pp. 1503-1511 ◽  
Author(s):  
J. M. Salman ◽  
F. M. Abid

Palm-date pits were used to prepare activated carbon by physiochemical activation method, which consisted of potassium hydroxide (KOH) treatment and carbon dioxide (CO2) gasification. The effects of variable parameters, activation temperature, activation time and chemical impregnation ratios (KOH: char by weight) on the preparation of activated carbon and for removal of pesticides: bentazon, carbofuran and 2,4-dichlorophenoxyacetic acid (2,4-D) were investigated. Based on the central composite design (CCD), two factor interaction (2FI) and quadratic models were respectively employed to correlate the effect of variable parameters on the preparation of activated carbon used for removal of pesticides with carbon yield. From the analysis of variance (ANOVA), the most influential factor on each experimental design response was identified. The optimum conditions for preparing activated carbon from palm-date pits were found to be: activation temperature of 850 °C, activation time of 3 h and chemical impregnation ratio of 3.75, which resulted in an activated carbon yield of 19.5% and bentazon, carbofuran, and 2,4-D removal of 84, 83, and 93%, respectively.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Daouda Kouotou ◽  
Horace Ngomo Manga ◽  
Abdelaziz Baçaoui ◽  
Abdelrani Yaacoubi ◽  
Joseph Ketcha Mbadcam

In this study, activated carbons were prepared from oil palm shells by physicochemical activation. The methodology of experimental design was used to optimize the preparation conditions. The influences of the impregnation ratio (0.6–3.4) and the activation temperature between 601°C and 799°C on the following three responses: activated carbon yield (R/AC-H3PO4), the iodine adsorption (I2/AC-H3PO4), and the methylene blue adsorption (MB/AC-H3PO4) results were investigated using analysis of variance (ANOVA) to identify the significant parameters. Under the experimental conditions investigated, the activation temperature of 770°C and impregnation ratio of 2/1 leading to the R/AC-H3PO4of 52.10%, theI2/AC-H3PO4of 697.86 mg/g, and the MB/AC-H3PO4of 346.25 mg/g were found to be optimum conditions for producing activated carbon with well compromise of desirability. The two factors had both synergetic and antagonistic effects on the three responses studied. The micrographs of activated carbons examined with scanning electron microscopy revealed that the activated carbons were found to be mainly microporous and mesoporous.


Sign in / Sign up

Export Citation Format

Share Document