Analysis of a Missile's Initial Disturbance

2014 ◽  
Vol 889-890 ◽  
pp. 152-155 ◽  
Author(s):  
Xin Lin Wei ◽  
Yi Jiang

In this paper, a certain type of vehicle missile launching system is the research object, which uses CAE technology to make a flexible coupling system dynamics simulation and analysis to provide a reference for similar tests. Since the complex structure of the vehicle missile system, reasonable assumptions and simplifications are made in establishing the dynamics model. Pro/E is used to build the three-dimensional model, and then it is imported to the ABAQUS to establish its dynamics model. Finally, in a complete virtual prototyping system model, we make a simulation of working conditions, and draw conclusions and analysis. The results show that the use of independent dynamics rigid-flexible coupling model dynamics simulation based on ABAQUS can be more realistic simulation of the process of vehicle missile launch, and it verifies the results of different working conditions, which provides a reference for the vehicle missile launching systems simulation .

Robotica ◽  
2010 ◽  
Vol 29 (5) ◽  
pp. 733-743 ◽  
Author(s):  
Conghui Liang ◽  
Hao Gu ◽  
Marco Ceccarelli ◽  
Giuseppe Carbone

SUMMARYA mechanical design and dynamics walking simulation of a novel tripod walking robot are presented in this paper. The tripod walking robot consists of three 1-degree-of-freedom (DOF) Chebyshev–Pantograph leg mechanisms with linkage architecture. A balancing mechanism is mounted on the body of the tripod walking robot to adjust its center of gravity (COG) during walking for balancing purpose. A statically stable tripod walking gait is performed by synchronizing the motions of the three leg mechanisms and the balancing mechanism. A three-dimensional model has been elaborated in SolidWorks® engineering software environment for a characterization of a feasible mechanical design. Dynamics simulation has been carried out in the MSC.ADAMS® environment with the aim to characterize and to evaluate the dynamic walking performances of the proposed design with low-cost easy-operation features. Simulation results show that the proposed tripod walking robot with proper input torques, gives limited reaction forces at the linkage joints, and a practical feasible walking ability on a flatten ground.


Biochemistry ◽  
1990 ◽  
Vol 29 (45) ◽  
pp. 10317-10322 ◽  
Author(s):  
Lennart Nilsson ◽  
Agneta Aahgren-Staalhandske ◽  
Ann Sofie Sjoegren ◽  
Solveig Hahne ◽  
Britt Marie Sjoeberg

2014 ◽  
Vol 940 ◽  
pp. 132-135 ◽  
Author(s):  
Yi Fan Zhao ◽  
Ling Sha ◽  
Yi Zhu

Established the dynamics simulation analysis model of crane hoisting mechanism based on the theory of dynamics in Adams software, and then through the three dimensional model of lifting mechanism dynamics entities, the constraints, load, drive can be added, the motion law can be defined to simulation analysis the change of the force of wire rope, the change of displacement, velocity and acceleration of lifting weight in the lifting process. On the basis of the simulation results, it can make a great improvement for the structure of crane and provide a meaningful theoretical reference for the hoisting machinery innovation design.


2009 ◽  
Vol 66 (12) ◽  
pp. 2157-2173 ◽  
Author(s):  
Daniele Tonina ◽  
John M. Buffington

A three-dimensional fluid dynamics model is developed to capture the spatial complexity of the effects of salmon redds on channel hydraulics, hyporheic exchange, and egg pocket habitat. We use the model to partition the relative influences of redd topography versus altered hydraulic conductivity (winnowing of fines during spawning) on egg pocket conditions for a simulated pool–riffle channel with a redd placed at the pool tail. Predictions show that altered hydraulic conductivity is the primary factor for enhancing hyporheic velocities and dissolved oxygen content within the egg pocket. Furthermore, the simulations indicate that redds induce hyporheic circulation that is nested within that caused by pool–riffle topography and that spawning-related changes in hyporheic velocities and dissolved oxygen content could create conditions suitable for incubation in locations that otherwise would be unfavorable (reinforcing the notion that salmonids actively modify their environment in ways that may be beneficial to their progeny).


2020 ◽  
Vol 19 (04) ◽  
pp. 855-867
Author(s):  
Xiangru Wang ◽  
Wei Song ◽  
Tao Xue ◽  
He Tian

With the development of electronics, mechanical automation, computer and other related disciplines, and the improvement of product efficiency and quality in modern industry, welding robots are born and play an increasingly important role in industrial production lines. 6R welding robot is most commonly used in industrial production lines, so the research on 6R welding robot has practical application values. In this paper, MS165 Yaskawa robot is selected as the target robot. SolidWorks software is used to establish the three-dimensional model of Yaskawa robot, which is imported into Adams. Dynamics analyses of the rigid–flexible coupling system of 6R spot welding robot are studied by powerful dynamic simulation functions of Adams. The maximum stress position of the spot-welding robot working under load is also studied, and the maximum stress curve is obtained.


2013 ◽  
Vol 765-767 ◽  
pp. 422-426 ◽  
Author(s):  
Ling Ling ◽  
Yuan Yuan Yi

Taking a planetary reducer in an electric vehicle as the object of study, a rigid-flexible coupling model was established to perform the dynamics simulation. The variational regularities of the meshing forces, output speed and acting forces of bearings were obtained, and then a finite element analysis of the planet carrier was carried out. This method can not only solve the problem of the boundary conditions of planet carrier which are difficult to define in finite element analysis, but also improve the accuracy of analysis results when the influence of carrier flexibility on the whole system is considered in dynamics simulation, which lays the foundation for further research on reducers.


Author(s):  
Rapeepan Promyoo ◽  
Hazim El-Mounayri ◽  
Kody Varahramyan

In this paper, a developed three-dimensional model for AFM-based nanomachining is applied to study mechanical scratching at the nanoscale. The correlation between the scratching conditions, including applied force, scratching depth, and distant between any two scratched grooves, and the defect mechanism in the substrate/workpiece is investigated. The simulations of nanoscratching process are performed on different crystal orientations of single-crystal gold substrate, Au(100), Au(110), and Au(111). The material deformation and groove geometry are extracted from the final locations of atoms, which are displaced by the rigid indenter. The simulation also allows for the prediction of normal and friction forces at the interface between the indenter and substrate. An AFM is used to conduct actual scratching at the nanoscale, and provide measurements to which the MD simulation predictions are compared. The predicted forces obtained from MD simulation compares qualitatively with the experimental results.


2014 ◽  
Vol 926-930 ◽  
pp. 3298-3301
Author(s):  
Li Chen ◽  
Yong Hai Sun ◽  
Yang Liu

Human tongue has complex structure and involves in chewing function, such as transporting and mixing foods. In order to develop tongue block of the bionic chewing equipment to make the food materials slide from the lingual surface to the tooth surface as much as possible in the same time, three-dimensional model of tongue block was built according to the geometric shape and physiology characteristic of the human tongue. The discrete element method was used to simulate the whole delivery process of food materials to teeth area, and then the geometrical parameters of the tongue block were optimized. The simulated results showed that when the height of the tongue tip and the tongue root were fixed, the optimal slope angles which have the decisive effect on the process of food materials slide were 32°and 2° respectively. The results provided a theoretical basis for the processing of tongue block of the bionic chewing equipment.


2015 ◽  
Vol 713-715 ◽  
pp. 95-98
Author(s):  
Ai Hua Li ◽  
Hong Yu Liu

Cold shearing machine is the machine equipment often used in metallurgical industry to shear head, tail and fixed length of rolled piece. The shearing movement of cold shearing machine can be realized by crankshaft driving link rod with relative up-and-down motion. Load on crankshaft is comparatively big. In this paper, cold shearing machine crankshaft was taken as an example. The three dimensional model of relative cold shearing machine crankshaft was constructed by SolidWorks software. Strength finite element analyses on relative model were made by static analysis module attached to SolidWorks software under maximum load working conditions. The overall displacement distribution pictures and overall Von Mises stress distribution pictures of cold shearing machine crankshaft under relative load working conditions were obtained. This research provides important reference base for the design and reform of cold shearing machine crankshaft.


2015 ◽  
Vol 25 (1) ◽  
pp. 26-36 ◽  
Author(s):  
Chidambar B. Jalkute ◽  
Kailas D. Sonawane

Amyloid-β (Aβ)-degrading enzymes are known to degrade Aβ peptides, a causative agent of Alzheimer's disease. These enzymes are responsible for maintaining Aβ concentration. However, loss of such enzymes or their Aβ-degrading activity because of certain genetic as well as nongenetic reasons initiates the accumulation of Aβ peptides in the human brain. Considering the limitations of the human enzymes in clearing Aβ peptide, the search for microbial enzymes that could cleave Aβ is necessary. Hence, we built a three-dimensional model of angiotensin-converting enzyme (ACE) from <i>Stigmatella aurantiaca</i> using homology modeling technique. Molecular docking and molecular dynamics simulation techniques were used to outline the possible cleavage mechanism of Aβ peptide. These findings suggest that catalytic residue Glu 434 of the model could play a crucial role to degrade Aβ peptide between Asp 7 and Ser 8. Thus, ACE from <i>S. aurantiaca</i> might cleave Aβ peptides similar to human ACE and could be used to design new therapeutic strategies against Alzheimer's disease.


Sign in / Sign up

Export Citation Format

Share Document