The Control Strategy Study on Combined Mechanical and Electrical Braking of 8 x 8 Vehicles Driven by Wheel Hub Motor

2014 ◽  
Vol 898 ◽  
pp. 578-581
Author(s):  
Yu Lin Yan ◽  
Jia Qi Li ◽  
Zi Li Liao ◽  
Chun Guang Liu

In order to recycle part of the brake energy in the driving hub motor of the 8X8 electric vehicles. And the energy utilization rate of electric drive vehicles should be increased, the wear of mechanical brake system should be reduced. A fuzzy control method is established for mechanical and electrical joint brake. It can be used to establish a principle of the distribution of brake. Through the simulation on MATLAB platform, it shows that this control method is efficient in improvement of brake ability, distribution of brake distribution, and the energy recycling.

2015 ◽  
Vol 789-790 ◽  
pp. 927-931
Author(s):  
Mohamad Heerwan bin Peeie ◽  
Hirohiko Ogino ◽  
Yoshio Yamamoto

This paper presents an active safety device for skid control of small electric vehicles with in-wheel motors. Due to the space limitation on the driving tire, a mechanical brake system was installed rather than hydraulic brake system. For the same reason, anti-lock brake system (ABS) that is a basic skid control method cannot be installed on the driving tire. During braking on icy road or emergency braking, the tire will be locked and the vehicle is skidding. To prevent tire lock-up and vehicle from skidding, we proposed the combination of ABS and regenerative brake timing control. The hydraulic unit of ABS is installed on the non-driving tire while the in-wheel motors on the driving tire will be an actuator of ABS to control the regenerative braking force. The performance of the ABS and regenerative brake timing control on the emergency braking situation is measured by the simulation. The simulation result shows that the combination of ABS and regenerative brake timing control can prevent tire lock-up and vehicle from skidding.


2012 ◽  
Vol 516-517 ◽  
pp. 1437-1442
Author(s):  
Qiu Rui Zhang ◽  
Bao Ming Ge ◽  
Da Qiang Bi

At present, the rate of energy utilization is low for the transit regenerative braking on urban rail; most of the energy is consumed by the resistance heating. In this paper, a regenerative braking energy injected-grid device is designed, which makes use of regenerative braking energy and effectively reduce the temperature rise caused by the resistance in the tunnel. The paper describes the composition and the design procedure of regenerative braking energy injected-grid device and presents a control strategy of device. The simulation of the single train model verifies that the stability of DC-bus voltage can be maintained and more power can be feedback to the grid by the proposed device when the train is braking. The feasibility and effectiveness of the proposed control method are validated by the experimental results.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Xiliang Ma ◽  
Ruiqing Mao

Cold storage refrigeration systems possess the characteristics of multiple input and output and strong coupling, which brings challenges to the optimize control. To reduce the adverse effects of the coupling and improve the overall control performance of cold storage refrigeration systems, a control strategy with dynamic coupling compensation was studied. First, dynamic model of a cold storage refrigeration system was established based on the requirements of the control system. At the same time, the coupling between the components was studied. Second, to reduce the adverse effects of the coupling, a fuzzy controller with dynamic coupling compensation was designed. As for the fuzzy controller, a self-tuning fuzzy controller was served as the primary controller, and an adaptive neural network was adopted to compensate the dynamic coupling. Finally, the proposed control strategy was employed to the cold storage refrigeration system, and simulations were carried out in the condition of start-up, variable load, and variable degree of superheat, respectively. The simulation results verify the effectiveness of the fuzzy control method with dynamic coupling compensation.


2014 ◽  
Vol 635-637 ◽  
pp. 1241-1245
Author(s):  
Li Lin ◽  
Hong Zhi Cui ◽  
Hu Zhu

In order to test the efficiency of motor control strategy, we developed a platform based on DSP2812,named permanent magnet synchronous motor control system which used in vehicle. The algorithm of vector control system is proved effective to modify parameters and debug. And the researches provide the experiment basis of motor control strategy study.


2013 ◽  
Vol 694-697 ◽  
pp. 2185-2189
Author(s):  
Xiao Ping Zhu ◽  
Xiu Ping Wang ◽  
Chun Yu Qu ◽  
Jun You Zhao

In order to against the uncertain disturbance of AC linear servo system, an H mixed sensitivity control method based on adaptive fuzzy control was putted forward in the paper. The controller is comprised of an adaptive fuzzy controller and a H robust controller, the adaptive fuzzy controller is used to approximate this ideal control law, H robust controller is designed for attenuating the approximation errors and the influence of the external disturbance. The experimental results show that this control strategy not only has a strong robustness to uncertainties of the linear system, but also has a good tracking performance, furthermore the control greatly improves the robust tracking precision of the direct drive linear servo system.


2013 ◽  
Vol 724-725 ◽  
pp. 1389-1392
Author(s):  
Yu Fan ◽  
Li Zhang ◽  
Kai Wang

This paper presents a new power allocation method in the electrical hybrid energy storage system composed by batteries and supercapacitors (SCs) for electric vehicles (EVs). Based on the speed of EVs, the new power sharing strategy, adapted to different kinds of load profiles, regulates the SC state of charge (SOC). By comparison, the new strategy showed the shortest accelerating time and least power losses, which can efficiently improve dynamic performance and energy utilization rate.


2012 ◽  
Vol 608-609 ◽  
pp. 494-499 ◽  
Author(s):  
Xin Shou Tian ◽  
Yue Hui Huang ◽  
Xiao Yan Xu ◽  
Wei Sheng Wang

In order to improve the frequency stability of grid, new control strategy for wind turbines need to be developed with high wind power penetration. This work analyzes the requirements of frequency control for wind turbines in some countries, and the characteristics and methods of typical frequency control strategy are analyzed. To meet the requirements of frequency control of wind turbine and to improve wind energy utilization efficiency, a method of optimization scheme of frequency control on wind turbine is given in the paper, and the operating curve of wind turbine with the control method is determined, at the same time this work gives a general method about how to determine some key parameters.


2021 ◽  
Vol 12 (1) ◽  
pp. 63
Author(s):  
Hui Gao ◽  
Lutong Yang ◽  
Haowei Duan

With the popularization of electric private cars and the increase of charging facilities in residential areas, disorderly charging will affect the power supply efficiency of their distribution transformers and the quality of electricity used by users in residential areas. In severe cases, it may even cause vibration of the power grid, causing serious three-phase imbalance problems such as single-phase burnout of transformers or insulation breakdown of household appliances. This paper analyzes the influencing factors of the unbalanced operation of each phase of the distribution transformer and the electrical load characteristics of typical residential areas. Based on the photovoltaic output of the station area, the charging and discharging capacity of the energy storage system, and the orderly charging plan of residential electric vehicles, a local orderly charging strategy for electric vehicles based on energy routers under the three-phase balance of the residential area is proposed. This strategy can realize the three-phase balance control of the distribution transformer. The effectiveness of the method is verified by a typical scenario example. The control method is changed to minimize the three-phase imbalance in residential areas and improve the low utilization rate of the distribution network and the comprehensive utilization efficiency of adjustable resources in residential areas.


2020 ◽  
Vol 39 (4) ◽  
pp. 5131-5139
Author(s):  
Wanqiang Qi

The main reason that currently hinders the commercialization of electric vehicles is a bottleneck in battery, motor and electronic control technology, however, an In-depth study of electronic control technology is one of the most effective means to break through this bottleneck at present. The purpose of this paper is to solve the problem that the pure electric vehicle is difficult to meet the driver’s acceleration intention in the urban road cycle acceleration work condition and the brake energy recovery process does not consider the battery state of charge during the deceleration work condition. Proposed a control strategy that can meet the requirements of road cycle conditions and driver’s driving intentions and take account of the vehicle operating status. Use a fuzzy control algorithm to develop a fuzzy controller that taking the motor demand speed change rate and battery state of charge as input, the motor demand torque compensation coefficient as output. The experimental results show that the modified control strategy can improve the actual output power, the actual output torque of the motor and actual driving force of the wheel under the premise of maintaining economy; it also improved the acceleration performance and climbing performance of pure electric vehicles, and can recycle braking energy efficiently. The experimental results show that the secondary development control strategy can meet the requirements of the cycle work condition CYC_ECE_EUDC for the speed and driving force and the driver’s driving intention under the premise of not sacrificing economics.


Sign in / Sign up

Export Citation Format

Share Document