Research on Energy and Environment Engineering with Heat Transfer in the Geothermal Heating System with Horizontal Wells

2014 ◽  
Vol 908 ◽  
pp. 461-464 ◽  
Author(s):  
Ming Ming Lv ◽  
Shu Zhong Wang ◽  
Xiang Rong Luo ◽  
Ming Luo

Geothermal heating system with horizontal wells doesnt extract ground water and is not affected by the distribution of geothermal resources, which is a closed-loop and environment-friendly system. In this paper, the heat exchange between the horizontal well and rock in the geothermal heating system with horizontal wells has been studied, the heat transfer model has been built, and the heat transfer at different flow rates of water has been calculated. The results show that the outlet temperature of the horizontal well increases with the decrease of the flow rate, and the flux of heat exchange decreases with the decrease of the flow rate. The outlet temperature and the flux of heat transfer have basically the same tendency with time. The three stages are respectively rapidly change stage, moderate change stage and linear change stage.

2006 ◽  
Vol 128 (10) ◽  
pp. 1050-1059 ◽  
Author(s):  
Todd M. Bandhauer ◽  
Akhil Agarwal ◽  
Srinivas Garimella

A model for predicting heat transfer during condensation of refrigerant R134a in horizontal microchannels is presented. The thermal amplification technique is used to measure condensation heat transfer coefficients accurately over small increments of refrigerant quality across the vapor-liquid dome (0<x<1). A combination of a high flow rate closed loop primary coolant and a low flow rate open loop secondary coolant ensures the accurate measurement of the small heat duties in these microchannels and the deduction of condensation heat transfer coefficients from measured UA values. Measurements were conducted for three circular microchannels (0.506<Dh<1.524mm) over the mass flux range 150<G<750kg∕m2s. Results from previous work by the authors on condensation flow mechanisms in microchannel geometries were used to interpret the results based on the applicable flow regimes. The heat transfer model is based on the approach originally developed by Traviss, D. P., Rohsenow, W. M., and Baron, A. B., 1973, “Forced-Convection Condensation Inside Tubes: A Heat Transfer Equation For Condenser Design,” ASHRAE Trans., 79(1), pp. 157–165 and Moser, K. W., Webb, R. L., and Na, B., 1998, “A New Equivalent Reynolds Number Model for Condensation in Smooth Tubes,” ASME, J. Heat Transfer, 120(2), pp. 410–417. The multiple-flow-regime model of Garimella, S., Agarwal, A., and Killion, J. D., 2005, “Condensation Pressure Drop in Circular Microchannels,” Heat Transfer Eng., 26(3), pp. 1–8 for predicting condensation pressure drops in microchannels is used to predict the pertinent interfacial shear stresses required in this heat transfer model. The resulting heat transfer model predicts 86% of the data within ±20%.


Author(s):  
Yujia Zhou ◽  
Hanliang Bo ◽  
Jingyu Du

With the purpose of enhancement of heat transfer performance and reduction of the volume of steam generator (SG), a structure of longitudinal finned tubes was proposed to replace the smooth tubes of SG in this paper. Taking the SG smooth tubes of Daya bay Nuclear Power plant as a reference, the simplified heat transfer model of new longitudinal finned tubes was established by ANSYS CFX. Three-dimensional numerical model was developed to investigate the fluid-solid coupled thermal hydraulic characteristics of different types of the longitudinal finned tubes compared with the smooth tubes. Analysis of calculation results were sufficiently discussed for the effect of mass flow rate, fin array, solid thermal conductivity and frictional resistance. The numerical results revealed that the heat transfer coefficient increase with the increasing mass flow rate in the secondary side. The material of the tubes has significantly influence on the heat transfer process. Different flow conditions have different thermal hydraulic characteristics. The evaluated criterion to judge the enhancement of the heat transfer of the coupled process was also proposed. The numerical results can provide some useful guidance for design optimization of longitudinal finned tubes in SG.


2020 ◽  
Vol 12 (18) ◽  
pp. 7345
Author(s):  
Linlin Zhang ◽  
Zhonghua Shi ◽  
Tianhao Yuan

In this paper, a dynamic heat transfer model for the vertical double U-tube borehole heat exchanger (BHE) was developed to comprehensively address the coupled heat transfer between the in-tube fluid and the soil with groundwater advection. A new concept of the heat transfer effectiveness was also proposed to evaluate the BHE heat exchange performance together with the index of the heat transfer rate. The moving finite line heat source model was selected for heat transfer outside the borehole and the steady-state model for inside the borehole. The data obtained in an on-site thermal response test were used to validate the physical model of the BHE. Then, the effects of soil type, groundwater advection velocity, inlet water flow rate, and temperature on the outlet water temperature of BHE were explored. Results show that ignoring the effects of groundwater advection in sand gravel may lead to deviation in the heat transfer rate of up to 38.9% of the ground loop design. The groundwater advection fosters the heat transfer of BHE. An increase in advection velocity may also help to shorten the time which takes the surrounding soil to reach a stable temperature. The mass flow rate of the inlet water to the BHE should be more than 0.5 kg·s−1 but should not exceed a certain upper limit under the practical engineering applications with common scale BHE. The efficiency of the heat transfer of the double U-tube BHE was determined jointly by factors such as the soil’s physical properties and the groundwater advection velocity.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Mengli Wu ◽  
Chiyu Wang ◽  
Yunpeng Li ◽  
Qi Nie

Aircraft ground deicing operation is significant to ensure civil flight safety in winter. Helically coiled tube is the important heat exchanger in Chinese deicing fluid heating system. In order to improve the deicing efficiency, the research focuses on heat transfer enhancement of deicing fluid in the tube. Based on the field synergy principle, a new reshaped tube (TCHC) is designed by ring-rib convex on the inner wall. Deicing fluid is high viscosity ethylene-glycol-based mixture. Because of the power function relation between high viscosity and temperature, viscosity has a negative influence on heat transfer. The number of ring-ribs and inlet velocity are two key parameters to the heat transfer performance. For both water and ethylene glycol, the outlet temperature rises when the number of ring-ribs increases to a certain limit. However, the increasing of velocity reduces heating time, which results in lower outlet temperature. The heating experiment of the original tube is conducted. The error between experiment and simulation is less than 5%. The outlet temperature of TCHC increases by 3.76%. As a result, TCHC efficiently promotes the coordination of velocity and temperature fields by changing the velocity field. TCHC has enhanced heat transfer of high viscosity deicing fluid.


Author(s):  
Xiaohu Dong ◽  
Huiqing Liu ◽  
Zhangxin Chen

In this paper, from the heat transfer mechanisms between perforated horizontal well and formation, the mathematical models for the heat transfer and pressure drops of the horizontal well with different steam injection pipe configurations are developed. All the conventional single-pipe, concentric dual-pipe, and parallel dual-pipe configurations are considered. A correlation is proposed to represent a relationship between the thermophysical properties of the formation and the formation pressure and temperature. Then, using the method of wellbore microcontrol elements and node analysis, the steam injection process in the three different well configurations is numerically investigated. Based on the test data of a parallel dual-pipe horizontal well from an actual oilfield, a steam backflow procedure for the parallel dual-pipe configuration is proposed to confirm the sealed status of a thermal packer. The theoretical investigation plays an important role in the performance evaluation and productivity prediction of horizontal well-based thermal recovery projects. Furthermore, it also sheds some important insights on a steam injection project design with dual-pipe horizontal wells.


2011 ◽  
Vol 145 ◽  
pp. 129-133 ◽  
Author(s):  
Thanhtrung Dang ◽  
Ngoctan Tran ◽  
Jyh Tong Teng

The study was done both numerically and experimentally on the heat transfer behaviors of a microchannel heat sink. The solver of numerical simulations (CFD - ACE+software package) was developed by using the finite volume method. This numerical method was performed to simulate for an overall microchannel heat sink, including the channels, substrate, manifolds of channels as well as the covered top wall. Numerical results associated with such kinds of overall microchannel heat sinks are rarely seen in the literatures. For cases done in this study, a heat flux of 9.6 W/cm2was achieved for the microchannel heat sink having the inlet temperature of 25 °C and mass flow rate of 0.4 g/s with the uniform surface temperature of bottom wall of the substrate of 50 °C; besides, the maximum heat transfer effectiveness of this device reached 94.4%. Moreover, in this study, when the mass flow rate increases, the outlet temperature decreases; however, as the mass flow rate increases, the heat flux of this heat sink increases also. In addition, the results obtained from the numerical analyses were in good agreement with those obtained from the experiments as well as those from the literatures, with the maximum discrepancies of the heat fluxes estimated to be less than 6 %.


1996 ◽  
Vol 118 (1) ◽  
pp. 169-172 ◽  
Author(s):  
P. S. Ghoshdastidar ◽  
V. K. Anandan Unni

This paper presents a steady-state heat transfer model for a rotary kiln used for drying and preheating of wet solids with application to the non-reacting zone of a cement rotary kiln. A detailed parametric study indicates that the influence of the controlling parameters such as percent water content (with respect to dry solids), solids flow rate, gas flow rate, kiln inclination angle and the rotational speed of the kiln on the axial solids and gas temperature profiles and the total predicted kiln length is appreciable.


2020 ◽  
Vol 216 ◽  
pp. 01124
Author(s):  
Shavkat Agzamov ◽  
Sevinar Nematova

The article discusses the features of the creation and use of efficient heat exchanger. Designs of pipes with a developed heat exchange is presented. The procedure for determining the degree of development of the heat exchanging surface, the heat transfer coefficient, and the calculation of the heat transfer equation are given. As a result of creating efficient heat exchangers, three main parameters are used: the pipe outside diameter; the estimated flow rate; the Prandtl number.


Sign in / Sign up

Export Citation Format

Share Document