Fabrication of 90° Wall of {100} Plane on (100) Si by NaOH Solution via Design of Experiments

2014 ◽  
Vol 909 ◽  
pp. 27-31
Author(s):  
Chu Pong Pakpum ◽  
Nirut Pussadee

The experimental trials were conducted by design of experiments (DOE) technique to find an anisotropic wet etching condition that achieves 90° wall angle on silicon (100) orientation wafer. Three considered factors assigned to the DOE were NaOH concentration, solution temperature, and stirring speed. The response aimed for this study was not only targeting at 90° wall but also providing highest etch rate. The experimental results showed that in order to fabricate the 90° wall angle, the best etching condition using was 30% wt NaOH concentration, 80°C solution temperature, and 300 rpm stirring speed. This condition gave an etch rate of 1245 nm/min with surface roughness (Ra) of 701.48 nm.

2015 ◽  
Vol 804 ◽  
pp. 12-15 ◽  
Author(s):  
Chupong Pakpum ◽  
Nirut Pussadee

Silicon-based thermoelectric device fabricated using standard semiconductor manufacturing technique is a promising technology that could lead to a mass production of clean energy. The vertical wall fabrication on Si substrates is typically achieved by high cost plasma etching and involved hazardous gases. The proper wet etching condition offers an economically alternative method in obtaining vertical wall on the Si substrate. Experimental trials were conducted by design of experiments (DOE) technique to find an anisotropic wet etching condition that achieves vertical etched wall on (100) Si wafer. Three considered factors assigned to the DOE were NaOH concentration, solution temperature, and IPA addition. The response aimed for this study was not only targeting at 90° wall but also providing highest etch rate. The experimental results showed that in order to get the 90° wall, the best etching condition achieved was using 45% wt of NaOH concentration, 40°C solution temperature, and without IPA added. This condition gave an etch rate of 97.11 nm/min with surface roughness (Ra) of 10.58 nm.


Author(s):  
A. Bhattacharya ◽  
Samarjit Singh ◽  
K. Maneesh ◽  
N. Venkata Reddy ◽  
Jian Cao

Incremental sheet metal forming (ISMF) has demonstrated its great potential to form complex three-dimensional parts without using a component specific tooling. The die-less nature in incremental forming provides a competitive alternative for economically and effectively fabricating low-volume functional sheet parts. However, ISMF has limitations with respect to maximum formable wall angle, geometrical accuracy and surface finish of the component. In the present work, an experimental study is carried out to study the effect of incremental sheet metal forming process variables on maximum formable angle and surface finish. Box-Behnken method is used to design the experiments for formability study and full factorial method is used for surface finish study. Analysis of experimental results indicates that formability in incremental forming decreases with increase in tool diameter. Formable angle first increases and then decreases with incremental depth and it is also observed that the variation in the formable angle is not significant in the range of incremental depths considered to produce good surface finishes during the present study. A simple analysis model is used to estimate the stress values during incremental sheet metal forming assuming that the deformation occurs predominantly under plane strain condition. A stress based criterion is used along with the above mentioned analysis to predict the formability in ISMF and its predictions are in very good agreement with the experimental results. Surface roughness decreases with increase in tool diameter for all incremental depths. Surface roughness increases first with increase in incremental depth up to certain angle and then decreases. Surface roughness value decreases with increase in wall angle.


1998 ◽  
Vol 537 ◽  
Author(s):  
D. A. Stocker ◽  
E. F. Schubert ◽  
K. S. Boutros ◽  
J. M. Redwing

AbstractA method is presented for fabricating fully wet-etched InGaN/GaN laser cavities using photoenhanced electrochemical wet etching followed by crystallographic wet etching. Crystallographic wet chemical etching of n- and p-type GaN grown on c-plane sapphire is achieved using H3PO4 and various hydroxides, with etch rates as high as 3.2 μm/min. The crystallographic GaN etch planes are {0001}, {1010}, {1011}, {1012}, and {1013}. The vertical {1010} planes appear perfectly smooth when viewed with a field-effect scanning electron microscope (FESEM), indicating a surface roughness less than 5 nm, suitable for laser facets. The etch rate and crystallographic nature for the various etching solutions are independent of conductivity, as shown by seamless etching of a p-GaN/undoped, high-resistivity GaN homojunction.


Author(s):  
A. Bhattacharya ◽  
K. Maneesh ◽  
N. Venkata Reddy ◽  
Jian Cao

Incremental sheet metal forming (ISMF) has demonstrated its great potential to form complex three-dimensional parts without using a component specific tooling. The die-less nature in incremental forming provides a competitive alternative for economically and effectively fabricating low-volume functional sheet parts. However, ISMF has limitations with respect to maximum formable wall angle, geometrical accuracy, and surface finish of the component. In the present work, an experimental study is carried out to study the effect of incremental sheet metal forming process variables on maximum formable angle and surface finish. Box–Behnken method is used to design the experiments for formability study and full factorial method is used for surface finish study. Analysis of experimental results indicates that formability in incremental forming decreases with increase in tool diameter. Formable angle first increases and then decreases with incremental depth and it is also observed that the variation in the formable angle is not significant in the range of incremental depths considered to produce good surface finishes during the present study. A simple analysis model is used to estimate the stress values during incremental sheet metal forming assuming that the deformation occurs predominantly under plane strain condition. A stress-based criterion is used along with the above mentioned analysis to predict the formability in ISMF and its predictions are in very good agreement with the experimental results. Surface roughness decreases with increase in tool diameter for all incremental depths. Surface roughness increases first with increase in incremental depth up to certain angle and then decreases. Surface roughness value decreases with increase in wall angle.


2005 ◽  
Vol 297-300 ◽  
pp. 557-561
Author(s):  
Woo Seong Che ◽  
Chang Gil Suk ◽  
Tae Gyu Park ◽  
Jun Tae Kim ◽  
Jun Hyub Park

A new method to improve the wet etching characteristics is described. The anisotropic wet-etching of (100) Si with megasonic wave has been studied in KOH solution. Etching characteristics of p-type (100) 6inch Si have been explored with and without megasonic irradiation. It has been observed that megasonic irradiation improves the characteristics of wet etching such as the etch rate, etch uniformity, surface roughness. The etching uniformity was less than ±1% on the whole wafer. The initial root-mean-squre roughness(Rrms) of single crystal silicon is 0.23nm [1]. It has been reported that the roughnesses with magnetic stirring and ultrasonic agitation were 566nm and 66nm [3]. But with megasonic irradiation, the Rrms of 1.7nm was achieved for the surface of 37µm depth. Wet etching of silicon with megasonic irradiation can maintain nearly the original surface roughness during etching. The results have verified that the megasonic irradiation is an effective way to improve the etching characteristics - the etch rate, etch uniformity and surface roughness.


2015 ◽  
Vol 659 ◽  
pp. 681-685
Author(s):  
Chu Pong Pakpum

The various methods of silicon wet etching techniques, which utilize ultrasonic agitation to reduce pyramidal hillocks in etched patterns, were evaluated in NaOH+IPA solution. The comparison of the etching methods composed of; 1.) no agitation + sample horizontally orientated, 2.) ultrasonic agitation + sample horizontally orientated, 3.) ultrasonic agitation + sample vertically orientated, and 4.) ultrasonic with rotation agitation + sample vertically orientated. It was found that the percentages of the etched patterns presenting hillocks after etching were 100%, 79.77%, 32.67% and 2.62%, respectively. Ultrasonic coupled with rotation agitation along with the sample vertically orientated is the most powerful etching technique, offering a high yield of smooth etched surface. The difference in etch rate between without agitation and applying ultrasonic agitation was not observed in this experiment, as it was operated in a solution temperature 60-65°C and a 275nm/min etch rate was achieved. The theories that relate to each evaluated method are also discussed.


1995 ◽  
Vol 10 (8) ◽  
pp. 1984-1992 ◽  
Author(s):  
X.B. Zhou ◽  
J.Th.M. De Hosson

A this paper the influence of surface roughness on contact angles in the system of liquid Al wetting solid surfaces of Al2O3 has been studied. It was observed that contact angles of liquid Al vary significantly on different rough surfaces of Al2O3. A model is proposed to correlate contact angles with conventional roughness measurements and wavelengths by assuming a cosine profile of rough grooves with a Gaussian distribution of amplitudes. In comparison with the experimental results, the model provides a good estimate for describing the influence of surface roughness on contact angles of liquid Al on Al2O3.


2012 ◽  
Vol 503-504 ◽  
pp. 615-619 ◽  
Author(s):  
Alonggot Limcharoen ◽  
Chupong Pakpum ◽  
Pichet Limsuwan

The experiments to study the feasibility to fabricate the 45 slant on p-type (100)-oriented silicon wafer were done. The various mask shapes, rectangular, cross, circle and boomerang, were patterned on the SiO2 mask by utilizing the conventional photolithography and dry etching process for investigating the anisotropic wet etch characteristic. The edge of masks were align in two crystal direction, 110 and 100 that is allowable to get a better understanding about the crystal orientation and the angle between planes in a crystal system. The very low etch rate,  50 nm/min, process regime was selected to fabricate the 45 slant with the concept is the lowest of an overall etch rate in the system to reach the level that is possible to detect the (110) plane. The etch recipe can be used for the next development work to built a housing of the laser light source for applying in a data storage technology.


2021 ◽  
Vol 314 ◽  
pp. 302-306
Author(s):  
Quoc Toan Le ◽  
E. Kesters ◽  
M. Doms ◽  
Efrain Altamirano Sánchez

Different types of ALD Ru films, including as-deposited, annealed Ru, without and with a subsequent CMP step, were used for wet etching study. With respect to the as-deposited Ru, the etching rate of the annealed Ru film in metal-free chemical mixtures (pH = 7-9) was found to decrease substantially. X-ray photoelectron spectroscopy characterization indicated that this behavior could be explained by the presence of the formation of RuOx (x = 2,3) caused by the anneal. A short CMP step applied to the annealed Ru wafer removed the surface RuOx, at least partially, resulting in a significant increase of the etching rate. The change in surface roughness was quantified using atomic force microscopy.


Sign in / Sign up

Export Citation Format

Share Document