Nonwoven Fabrics Made by Using Recycled Polyester Fiber to Reinforce Low-Melting-Point Polylactide: Processing Technique and Property Evaluation

2014 ◽  
Vol 910 ◽  
pp. 230-233
Author(s):  
Jia Horng Lin ◽  
Ying Huei Shih ◽  
Ching Wen Lin ◽  
Ching Wen Lou

Polymeric material, which is commonly used in packaging, has been widely applied due to the fact that it is lightweight and chemical resistant. Being non-degradable, polymeric waste can thus only be eliminated by burning, and subsequently, there is a rising need for degradable polymeric material to manage this manner of disposal. This study thus uses degradable, low-melting-point polylactide (LMPLA) fibers and recycled polyester (RPET) fibers to make nonwoven fabrics for packaging. The tensile strength, tear strength, and air permeability of the nonwoven fabrics are then tested. The experiment results show that a 40% of RPET fibers can effectively promote the mechanical properties of the LMPLA nonwoven fabrics.

2013 ◽  
Vol 365-366 ◽  
pp. 1152-1156
Author(s):  
Ching Wen Lou ◽  
Shih Yu Huang ◽  
Ching Hui Lin ◽  
Yi Chang Yang ◽  
Jia Horng Lin

This study creates the high resilience nonwoven fabrics by using modified polyester fiber. In order to have resilience, the nonwoven fabrics are thermally bonded with various temperatures and the air permeability and mechanical properties of the nonwoven fabrics are then evaluated. The optimum tensile strength of 481 N and resiliency of 26 cm occur when the nonwoven fabrics are thermally bonded at 180 °C, and the optimum tear strength of 276 N occurs when the nonwoven fabrics are thermally bonded at 160 °C.


2014 ◽  
Vol 910 ◽  
pp. 174-177 ◽  
Author(s):  
Ching Wen Lou ◽  
Shih Yu Huang ◽  
Jia Horng Lin

Nonwoven fabric technique has been extensively used because nonwoven fabrics can uses both filaments and staple fibers and have ease of processing, a wide range of raw material sources, and a short production. This study makes protective nonwoven fabrics with Kevlar fibers, flame retardant polyester (FPET) fibers, and low-melting-point polyester (LPET) fibers. The number of lamination layers of the nonwoven fabric is varied and examined to determine their influence on the mechanical properties of the protective nonwoven fabrics. The results of test show that tensile strength and bursting strength of the protective nonwoven fabrics increase as a result of the increased number of lamination layer.


2013 ◽  
Vol 365-366 ◽  
pp. 1165-1168
Author(s):  
Jia Horng Lin ◽  
Ya Lan Hsing ◽  
Wen Hao Hsing ◽  
Jin Mao Chen ◽  
Ching Wen Lou

Heat energy plays a significant role in resources and industries, which makes the development of energy-saving and thermal retention materials important to environment protection. This study combines three-dimensional hollow Polyethylene Terephthalate (TPET) fibers, recycled far-infrared polyethylene terephthalate (RFPET) fibers, and low melting temperature polyethylene terephthalate (LPET) fibers at various ratios to make the RFPET/TPET hybrid nonwoven fabric. The tensile strength, tearing strength, air permeability, and far infrared emissivity of the fabrics are evaluated. With a blending ratio of 8:0:2, the hybrid nonwoven fabrics have the optimum tensile strength of 145 N, tear strength of 184 N, and air permeability of 205 cm3/cm2/s.


2014 ◽  
Vol 910 ◽  
pp. 266-269 ◽  
Author(s):  
Jia Horng Lin ◽  
Jing Chzi Hsieh ◽  
Jia Hsun Li ◽  
Wen Hao Hsing ◽  
Ching Wen Lou

Geotextile has been commonly used in civil and geotechnical engineering applications, and the majority of geotextiles is made of nonwoven fabrics. Therefore, this study combines crimped polyester (PET) fibers, recycled Kevlar unidirectional selvage fibers, and low-melting-point PET (LPET) fibers to form PET/Kevlar/LPET nonwoven geotextiles, and then examines how various neelde-punch depths influence mechanical properties of the resulting nonwoven geotextiles. The tensile strength, tearing strength, bursting strength, and static puncture resistance of the nonwoven fabrics increase as a result of an increase of 0.3 cm to 0.5 cm in needle-punch depth. However, an increase of 0.5 cm to 0.7 cm causes a slight decrease in all aforementioned properties.


2012 ◽  
Vol 627 ◽  
pp. 302-306
Author(s):  
Jia Horng Lin ◽  
Shih Yu Huang ◽  
Hui Yu Yang ◽  
Ching Wen Lin ◽  
Jin Mao Chen ◽  
...  

Cotton fiber is a type of natural fibers. Using natural fibers to fabricate textile can not only decrease the consumption of synthetic fibers, but also reduce the environmental pollution. This study aims to fabricate elastic knitted fabrics and evaluate their properties. Polyester (PET) filaments and rubber threads serve as the warp while cotton yarn serves as the weft for warp knitting. A crochet machine makes the warp and weft into warp knits with desirable stretchability, during which the amount (single/double) and the ply number (1-, 2-, and 3-ply) of the weft are further varied. The resulting warp knits are evaluated for water absorption, air permeability, and mechanical properties. As demonstrated by the experimental results, the warp knits with single 1-ply weft (S1) yield an optimal air permeability of 224.6 cm3/cm2/s and stiffness along the warp direction of 4.74cm. The warp knits with single 2-ply weft (S2) display an optimal tearing strength of 86N while the warp knits with double 3-ply weft (D3/3) has an optimal tensile strength of 708N.


2011 ◽  
Vol 239-242 ◽  
pp. 683-686 ◽  
Author(s):  
Ching Wen Lou ◽  
Chia Chang Lin ◽  
Wen Hao Hsing ◽  
Chao Chiung Huang ◽  
Yen Min Chien ◽  
...  

In this research, the nonwoven fabrics were made of 50 % high-tenacity polyester fiber and 50 % low melting polyester fiber, after which the nonwoven fabrics were thermal-treated at 110 °C, 120 °C, 130 °C, 140 °C and 150 °C for 1 min, 2 min, 3 min, 4 min and 5 min. Next, two layers of nonwoven fabrics were laminated with a layer glass (GF) fiber plain fabric or a layer of Nylon 66 grid, forming the sandwich structure. The nonwoven/ GF composite fabrics and the nonwoven/ Nylon 66 grid composite fabrics were also reinforced by needle-punching and thermal treatment, after which the two composite fabrics were measured with tensile strength and stab-resistant strength. Meanwhile, two layers of nonwoven fabrics needle-punched served as the control group. According to the results, Nylon 66 grid and glass fibers plain fabrics were both good at strengthening, the former reinforced the tensile strength of the composite fabrics and the later heightened the stab-resistant strength of the composite fabrics.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 117
Author(s):  
Le Thuy Hang ◽  
Do Quoc Viet ◽  
Nguyen Pham Duy Linh ◽  
Vu Anh Doan ◽  
Hai-Linh Thi Dang ◽  
...  

In this study, we present the fabrication of nitrile butadiene rubber/waste leather fiber (NBR/WLF) composites with different weight percentages of WLF and NBR (0/100, 20/80, 30/70, 40/60, 50/50, 60/40 wt/wt). WLF was prepared by cutting the scrap leathers from the waste product of the Vietnamese leather industry. Subsequently, in order to make the short fibers, it was mixed by a hammer mill. The characteristics of WLF/NBR composites such as mechanical properties (tensile strength, tear strength, hardness), dynamic mechanical properties, toluene absorption, and morphology were carefully evaluated. As a result, the tensile strength and tear strength become larger with increasing WLF content from 0 to 50 wt% and they decrease when further increasing WLF content. The highest tensile strength of 12.5 MPa and tear strength of 72.47 N/mm were achieved with the WLF/NBR ratio of 50/50 wt%. Both hardness and resistance of the developed materials with toluene increased with increasing WLF content. The SEM results showed a good adhesion of NBR matrix and the WLF. The increasing of storage modulus (E’) in comparison with raw NBR showed good compatibility between WLF and NBR matrix. This research showed that the recycled material from waste leather and NBR was successfully prepared and has great potential for manufacturing products such as floor covering courts and playgrounds, etc.


2021 ◽  
Vol 16 (3) ◽  
pp. 124-135
Author(s):  
Nilüfer Yıldız Varan

Antimicrobials are substances or mixtures of substances used to destroy or suppress the growth of harmful microorganisms such as bacteria, viruses, or fungi on inanimate objects and surfaces. In this study, an alternative method is presented using triclosan agents that can kill bacteria and viruses to help keep patient, operating, and emergency rooms free of germs. Samples were treated with triclosan to achieve antimicrobial/antiviral/antifungal properties for further designs to help comfort and bacteria, virus, fungi (BVF) resistantance during use. The physical, and mechanical properties of triclosan treated cotton and cotton/elastane fabrics in comparison with untreated control samples was investigated. The results showed that a small significant decrease was observed for tensile strength (strip and grab methods), tear strength and seam strength. Besides, statistically a small significant decrease was observed with the increase in triclosan concentration for all samples. The panama weaves showed the lowest tensile strength and the highest tear strength and statistically small significant decrease was observed for all treated samples. The antimicrobial tests showed that all treated samples have a very good antimicrobial activity which can also lead to antivirus protection by providing hygienic environment for the users during future designs.


2013 ◽  
Vol 8 (1) ◽  
pp. 155892501300800
Author(s):  
Jia-Horng Lin ◽  
Chen-Hung Huang ◽  
Ching-Wen Lin ◽  
Ching Wen Lou

In this research, we create a PET/TPU/PU composite base fabric from a PET nonwoven base fabric, a TPU honeycomb grid, and a PU foam plank. First, the PET base fabric is made from 7D three-dimensional-hollow-crimp fiber (7D PET) and low-melting-point (low-Tm) fibers with weight ratio and number of lamination layers as the parameters. The hardness and rebound resilience rate of the PET nonwoven base fabric are 71% and 63.5%, respectively. The PET nonwoven base fabric's optimum air permeability is 240 cm3/s/cm2. The maximum tensile strength of the PET nonwoven base fabric with 9 layers of lamination is 39.8 kg/cm2, and when the weight ratio is either 4:6 or 3:7, changes to 40 kg/cm2. The PET/TPU/PU composite base fabric has a LOI of 33 when the number of lamination layers is 10, or when the low-Tm fiber content is 50%; the composite base fabric's average optimum thermal conductivity is 0.914 W/mK.


2005 ◽  
Vol 21 (3) ◽  
pp. 183-199
Author(s):  
G.K. Jana ◽  
C.K. Das

De-vulcanization of vulcanized elastomers represents a great challenge because of their three-dimensional network structure. Sulfur-cured gum natural rubbers containing three different sulfur/accelerator ratios were de-vulcanized by thio-acids. The process was carried out at 90 °C for 10 minutes in an open two-roll cracker-cum-mixing mill. Two concentrations of de-vulcanizing agent were tried in order to study the cleavage of the sulfidic bonds. The mechanical properties of the re-vulcanized rubber (like tensile strength, modulus, tear strength and elongation at break) were improved with increasing concentrations of de-vulcanizing agent, because the crosslink density increased. A decrease in scorch time and in optimum cure time and an increase in the state of cure were observed when vulcanized rubber was treated with high amounts of de-vulcanizing agent. The temperature of onset of degradation was also increased with increasing concentration of thio-acid. DMA analysis revealed that the storage modulus increased on re-vulcanization. From IR spectroscopy it was observed that oxidation of the main polymeric chains did not occur at the time of high temperature milling. Over 80% retention of the original mechanical properties (like tensile strength, modulus, tear strength and elongation at break) of the vulcanized natural rubber was achieved by this mechanochemical process.


Sign in / Sign up

Export Citation Format

Share Document