Processing Technique and Property Evaluation of Stab-Resistant Composite Fabrics

2011 ◽  
Vol 239-242 ◽  
pp. 683-686 ◽  
Author(s):  
Ching Wen Lou ◽  
Chia Chang Lin ◽  
Wen Hao Hsing ◽  
Chao Chiung Huang ◽  
Yen Min Chien ◽  
...  

In this research, the nonwoven fabrics were made of 50 % high-tenacity polyester fiber and 50 % low melting polyester fiber, after which the nonwoven fabrics were thermal-treated at 110 °C, 120 °C, 130 °C, 140 °C and 150 °C for 1 min, 2 min, 3 min, 4 min and 5 min. Next, two layers of nonwoven fabrics were laminated with a layer glass (GF) fiber plain fabric or a layer of Nylon 66 grid, forming the sandwich structure. The nonwoven/ GF composite fabrics and the nonwoven/ Nylon 66 grid composite fabrics were also reinforced by needle-punching and thermal treatment, after which the two composite fabrics were measured with tensile strength and stab-resistant strength. Meanwhile, two layers of nonwoven fabrics needle-punched served as the control group. According to the results, Nylon 66 grid and glass fibers plain fabrics were both good at strengthening, the former reinforced the tensile strength of the composite fabrics and the later heightened the stab-resistant strength of the composite fabrics.

2011 ◽  
Vol 239-242 ◽  
pp. 1990-1993 ◽  
Author(s):  
Ching Wen Lou ◽  
Chia Chang Lin ◽  
Chao Chiung Huang ◽  
Wei Lun Tai ◽  
Shih Yu Huang ◽  
...  

70% Nylon 6 fiber and 30% low melting polyester fiber were manufactured into nonwoven fabrics, after which the nonwoven fabrics and Nylon 66 grids were needle-punched and heat-treated, forming the Nonwoven/ Nylon 66 grid composite fabrics. The optimum parameter for heat treatment was 150°C for 5 minutes, improving the mechanical property of the composite fabrics. Subsequently, with a fixed pick-up ratio of 200%, two waterborne PU resin (SE-5030 and SE-5070) with 0, 5, 10, 15, 20, and 25 wt% of cross-linking agent were used, offering the impregnation for Nonwoven/ Nylon 66 composite fabrics. After impregnation, the Nonwoven/ Nylon 66 grid composite fabrics were measured with drop tower stab testing, quasistatic stab testing and tensile strength testing. SE-5030 contributed greater tensile strength to the composite fabrics (1129.5 N in cross machine direction (CD) and of 816.4 N in machine direction(MD)); however, SE-5070 offered the composite fabrics the optimum stab-resistance strength of 69.9 N.


2014 ◽  
Vol 910 ◽  
pp. 230-233
Author(s):  
Jia Horng Lin ◽  
Ying Huei Shih ◽  
Ching Wen Lin ◽  
Ching Wen Lou

Polymeric material, which is commonly used in packaging, has been widely applied due to the fact that it is lightweight and chemical resistant. Being non-degradable, polymeric waste can thus only be eliminated by burning, and subsequently, there is a rising need for degradable polymeric material to manage this manner of disposal. This study thus uses degradable, low-melting-point polylactide (LMPLA) fibers and recycled polyester (RPET) fibers to make nonwoven fabrics for packaging. The tensile strength, tear strength, and air permeability of the nonwoven fabrics are then tested. The experiment results show that a 40% of RPET fibers can effectively promote the mechanical properties of the LMPLA nonwoven fabrics.


2013 ◽  
Vol 365-366 ◽  
pp. 1152-1156
Author(s):  
Ching Wen Lou ◽  
Shih Yu Huang ◽  
Ching Hui Lin ◽  
Yi Chang Yang ◽  
Jia Horng Lin

This study creates the high resilience nonwoven fabrics by using modified polyester fiber. In order to have resilience, the nonwoven fabrics are thermally bonded with various temperatures and the air permeability and mechanical properties of the nonwoven fabrics are then evaluated. The optimum tensile strength of 481 N and resiliency of 26 cm occur when the nonwoven fabrics are thermally bonded at 180 °C, and the optimum tear strength of 276 N occurs when the nonwoven fabrics are thermally bonded at 160 °C.


2013 ◽  
Vol 365-366 ◽  
pp. 1165-1168
Author(s):  
Jia Horng Lin ◽  
Ya Lan Hsing ◽  
Wen Hao Hsing ◽  
Jin Mao Chen ◽  
Ching Wen Lou

Heat energy plays a significant role in resources and industries, which makes the development of energy-saving and thermal retention materials important to environment protection. This study combines three-dimensional hollow Polyethylene Terephthalate (TPET) fibers, recycled far-infrared polyethylene terephthalate (RFPET) fibers, and low melting temperature polyethylene terephthalate (LPET) fibers at various ratios to make the RFPET/TPET hybrid nonwoven fabric. The tensile strength, tearing strength, air permeability, and far infrared emissivity of the fabrics are evaluated. With a blending ratio of 8:0:2, the hybrid nonwoven fabrics have the optimum tensile strength of 145 N, tear strength of 184 N, and air permeability of 205 cm3/cm2/s.


2011 ◽  
Vol 236-238 ◽  
pp. 3001-3004 ◽  
Author(s):  
Ching Wen Lou ◽  
Jin Mao Chen ◽  
Ching Wen Lin ◽  
Wen Hao Hsing ◽  
Hsien Chang Liao ◽  
...  

The earth can be strengthened by embeding geogrids within. Glass fibers, used in geogrids, are heat-resistant and have stable size and chemistry; however, they tend to break from the clefts on the surface. This project created complex braids for geogrids by wrapping glass fibers (GF) with polypropylene (PP) filaments, preventing the geogrids’ outer friction and combining two materials as a bind. An 8-spindle braid machine and a 16-spindle braid machine were employed for braiding process. The experimental group was divided into two subjects, one was PP/ GF complex braids heat-set and the other non-heat-set. Then PP/ GF complex braids were measured with tensile strength after being immersed in sodium hydroxide (NaOH) solutions and sodium chloride (NaCl) solutions.


2013 ◽  
Vol 365-366 ◽  
pp. 1217-1220 ◽  
Author(s):  
Chen Hung Huang ◽  
Yu Chun Chuang

This study aims to investigate the optimal value of design parameters for the sound-absorbing nonwoven composite board. The number of laminated layers and thickness of polyester fiber are viewed as the design parameters for fabricating the nonwoven composite board. The 2D, 7D and 12D polyester fibers are individually mixed with 4D low-melting point polyester fiber to produce 2D polyester nonwoven fabric (2D-PETF), 7D polyester nonwoven fabric (7D-PETF) and 12D polyester nonwoven fabric (12D-PETF) respectively. The developed nonwoven fabrics are then used to fabricate 2D-PET, 7D-PET and 12D-PET nonwoven composite boards through the multiple needle-punching and thermal bonding techniques. The sound absorption performance of each PET composite board is carefully examined. The experimental results reveal that the 7D-PET composite board with 10 laminated layers has the optimal sound absorption performance.


2016 ◽  
Vol 47 (3) ◽  
pp. 331-347 ◽  
Author(s):  
Jing-Chzi Hsieh ◽  
Jia-Hsun Li ◽  
Chen-Hung Huang ◽  
Ching-Wen Lou ◽  
Jia-Horng Lin

Geotextiles primarily provide reinforcement, and their tensile properties can resist stresses and prevent soil structure deformation. Nonwoven geotextiles are also commonly used in railways, roads, soil and water conservation, and therefore their applications are subjected to climatic environments and geographical environments where the geotextiles are used. Therefore, this study recycles and reclaims Kevlar selvages that are then incorporated with polyester fibers and low-melting-point polyester fibers in order to form nonwoven geotextiles. The tensile properties of the geotextiles in relation to various ambient environmental temperatures are examined with the test temperatures being set as 25℃ (control group), 50, 60, 70, and 80℃. Statistical analyses are performed to examine the effects of fiber blending ratios, needle punching depth, and thermal treatments on the tensile properties of the nonwoven geotextiles. The test results indicate that nonthermally treated nonwoven geotextiles have a tensile strength that is significantly increased when the ambient temperature is increased. In contrast, according to the insignificant differences obtained from statistical analyses, the tensile strength of thermally treated samples is independent of the ambient temperatures, indicating that thermal treatment allows for heat setting of the geotextiles. In particular, the thermally treated polyester/low-melting-point polyester/Kevlar nonwoven geotextiles have the maximum tensile strength when they are composed of a blending ratio of 60/20/20 wt% and a needle punching depth of 0.5 cm.


2014 ◽  
Vol 910 ◽  
pp. 174-177 ◽  
Author(s):  
Ching Wen Lou ◽  
Shih Yu Huang ◽  
Jia Horng Lin

Nonwoven fabric technique has been extensively used because nonwoven fabrics can uses both filaments and staple fibers and have ease of processing, a wide range of raw material sources, and a short production. This study makes protective nonwoven fabrics with Kevlar fibers, flame retardant polyester (FPET) fibers, and low-melting-point polyester (LPET) fibers. The number of lamination layers of the nonwoven fabric is varied and examined to determine their influence on the mechanical properties of the protective nonwoven fabrics. The results of test show that tensile strength and bursting strength of the protective nonwoven fabrics increase as a result of the increased number of lamination layer.


2011 ◽  
Vol 287-290 ◽  
pp. 2677-2680 ◽  
Author(s):  
Jia Horng Lin ◽  
Chen Hung Huang ◽  
Kuo Cheng Tai ◽  
Chia Chang Lin ◽  
Yu Chun Chuang ◽  
...  

The rapid advances in technology have driven people for seeking ways to improve the quality of their living environment. While excessive noise is more likely to affect people physically and psychologically such as tiredness, dulling of the senses, lack of concentration, and reduction in work efficiency, etc, therefore, noise suppression has become an important research issue. In this research, 7 D polyester staple fiber and 4 D low melting point fiber have been used to fabricate the polyethylene terephthalate (PET) fabric through the process of opening, blending, carding lining, lapping, and needle-punching. Meanwhile, the contents of low-melting point polyester fiber are varied as 10 wt%, 20 wt%, 30 wt%, 40 wt% and 50 wt% in PET fabric. The physical properties of PET fabrics are then evaluated after hot pressing process. Experimental results show that 50 wt% low-melting point polyester fiber is the best choice for PET fabric. Further, the techniques of lamination and multiple needle-punching are employed to make the PET/PP composite sound-absorbing board. A layer of polypropylene (PP) nonwoven selvages is placed between two layers of PET fabrics in the process of lamination. The PET/PP fibers casted into a mold are then put into a hot-air circulation oven around 170 °C for 10 minutes. Afterwards, the evaluation of PET/PP composite sound-absorbing board on sound absorption, flame resistance, thermal insulation, and relative mechanical properties is properly conducted.


1997 ◽  
Vol 12 (4) ◽  
pp. 1091-1101 ◽  
Author(s):  
Seunggu Kang ◽  
Hongy Lin ◽  
Delbert E. Day ◽  
James O. Stoffer

The dependence of the optical and mechanical properties of optically transparent polymethyl methacrylate (PMMA) composites on the annealing temperature of BK10 glass fibers was investigated. Annealing was used to modify the refractive index (R.I.) of the glass fiber so that it would more closely match that of PMMA. Annealing increased the refractive index of the fibers and narrowed the distribution of refractive index of the fibers, but lowered their mechanical strength so the mechanical properties of composites reinforced with annealed fibers were not as good as for composites containing as-pulled (chilled) glass fibers. The refractive index of as-pulled 17.1 μm diameter fibers (R.I. = 1.4907) increased to 1.4918 and 1.4948 after annealing at 350 °C to 500 °C for 1 h or 0.5 h, respectively. The refractive index of glass fibers annealed at 400 °C/1 h best matched that of PMMA at 589.3 nm and 25 °C, so the composite reinforced with those fibers had the highest optical transmission. Because annealed glass fibers had a more uniform refractive index than unannealed fibers, the composites made with annealed fibers had a higher optical transmission. The mechanical strength of annealed fiber/PMMA composites decreased as the fiber annealing temperature increased. A composite containing fibers annealed at 450 °C/1 h had a tensile strength 26% lower than that of a composite made with as-pulled fibers, but 73% higher than that for unreinforced PMMA. This decrease was avoided by treating annealed fibers with HF. Composites made with annealed and HF (10 vol. %)-treated (for 30 s) glass fibers had a tensile strength (∼200 MPa) equivalent to that of the composites made with as-pulled fibers. However, as the treatment time in HF increased, the tensile strength of the composites decreased because of a significant reduction in diameter of the glass fiber which reduced the volume percent fiber in the composite.


Sign in / Sign up

Export Citation Format

Share Document