scholarly journals Experimental analysis of drilling fluid prepared by mixing iron (III) oxide nanoparticles with a KCl–Glycol–PHPA polymer-based mud used in drilling operation

2020 ◽  
Vol 10 (8) ◽  
pp. 3389-3397 ◽  
Author(s):  
Nayem Ahmed ◽  
Md. Saiful Alam ◽  
M. A. Salam

Abstract Loss of drilling fluid commonly known as mud loss is considered as one of the critical issues during the drilling operation as it can cause severe formation damage. To minimize fluid loss, researchers introduced numerous additives but did not get the expected result. Recently, the use of nanoparticles (NPs) in drilling fluid gives a new hope to control the fluid loss. A basic KCl–Glycol–PHPA polymer-based mud is made, and six different concentrations of 0.1, 0.5, 1.0, 1.5, 2.0, 3.0 wt% iron (III) oxide or Hematite (Fe2O3) NPs are mixed with the basic mud. The experimental observations reveal that fluid loss of basic mud is 5.9 ml after 30 min and prepared nano-based drilling mud results in a less fluid loss at all concentrations. Nanoparticles with a concentration of 0.5 wt% result in a 5.1 ml fluid loss at the API LTLP filter press test. On the other hand, nanoparticles with a concentration of 3.0 wt% enhance the plastic viscosity, yield point, and 10 s gel strength by 15.0, 3.0, and 12.5%, respectively. The optimum concentration of hematite NPs is found to be 0.5 wt% which reduces the API LPLT filtrate volume and filter cake thickness by 13.6 and 40%, respectively, as well as an improvement of plastic viscosity by 10%.

2019 ◽  
Vol 11 (23) ◽  
pp. 6714 ◽  
Author(s):  
Hany Gamal ◽  
Salaheldin Elkatatny ◽  
Salem Basfar ◽  
Abdulaziz Al-Majed

The design of drilling fluids is very important for the drilling operation success. The rheological properties play a key role in the performance of the drilling fluid. Therefore, studying the mud rheological properties of the water-based drilling fluid based on bentonite is essential. The main objectives of this study are to address the effect of pH changes on the rheological and filtration properties of the water-based drilling fluid based on bentonite and to provide a recommended pH range for this drilling fluid for a safe and high-performance drilling operation. Different samples of the water-based drilling fluid based on bentonite with different pH values were prepared, and the rheological properties such as plastic viscosity, yield point, and gel strength were measured. After that, the filtration test was performed under 300 psi differential pressure and 200 °F. The pH for the water-based drilling fluid based on bentonite significantly affects the mud rheology. The shear stress and shear rate relation were varying with the change in the pH. Increasing the pH from 8 to 12 resulted in decreasing the plastic viscosity by 53% and the yield point by 82%, respectively. The ratio of yield point / plastic viscosity was 1.4 for pH of 8 while it decreased to 0.5 for a pH of 11 and 12. There was a significant decrease in the gel strength readings by increasing the pH. The filtrate volume and filter cake thickness increased by increasing pH. The filtration volume increased from 9.5 cm3 to 12.6 cm3 by increasing the pH from 9 to 12. The filter cake thickness was 2 mm at 9 pH, while it was increased to 3.6 mm for 12 pH. It is recommended from the results to keep the pH of water-based drilling fluid based on bentonite in the range of 9 to 10 as it provides the optimum mud rheological and filtration properties. The findings of this study illustrated that keeping the pH in the range of 9 to 10 will reduce the plastic viscosity that will help in increasing the rate of penetration and reducing the required pump pressure to circulate the mud to the surface which will help to sustain the drilling operation. In addition, reducing the filtrate volume will produce a thin filter cake which will help in avoiding the pipe sticking and protect the environment. In general, optimizing the pH of the water-based drilling fluid based on bentonite in the range of 9 to 10 will improve the drilling operation and minimize the total cost.


2012 ◽  
pp. 1-22
Author(s):  
Issham Ismail ◽  
Rosli Illias ◽  
Amy Shareena Abd. Mubin ◽  
Masseera Machitin

The effective cleanup of filter cakes in long, horizontal open-hole completions can maximize an oil well’s productivity. A cleaning solution was formulated which comprised effective microorganisms and a viscoelastic surfactant in order to degrade filter cakes of water-based mud. Generally, the effectiveness of the microorganisms in degrading filter cakes is influenced by temperature and its concentration. To overcome the problem, the viscoelastic surfactant has been used to extend the application of temperature range and increase the viscosity of the cleaning solution. Laboratory studies were conducted to examine the effectiveness of the microorganisms in degrading filter cakes. The apparent viscosity of cleaning solution was measured as a function of shear rate (102.2 s and 1022 s ) and temperature (25 to 80°C). The surface tension of the cleaning solution was measured at room temperature. Static fluid loss tests were performed using the HPHT Filter Press in order to determine the effectiveness of the cleaning solution in degrading filter cake at different temperatures ranging from 100°F to 300°F. Experimental results showed that the cleaning solution could effectively degrade the filter cake. Soaking process was performed until 48 hours and it showed that at temperature 200°F and below, the pure effective microorganisms achieved the highest efficiency of filter cake degradation, i.e. 34.9%. However, at temperature 300°F, cleaning solution that contained effective microorganisms and higher concentration of viscoelastic surfactant was found to perform better. The viscoelastic surfactant succeeded in increasing the viscosity of the cleaning solution, thus enhanced the rate of degradation of filter cakes, i.e. 33.4% at 300°F. The surface tension of the cleaning solution did not change significantly at various concentrations at room temperature.


2019 ◽  
Vol 8 (4) ◽  
pp. 9720-9722

Drilling fluid or mud is essential fluid in drilling operation which has many important properties and one of the important properties is the viscosity of the drilling fluid and the viscosity is further classified as yield viscosity and plastic viscosity which means different in terms of its function. This paper is attempting to show the rheological characteristics of the different samples of the drilling fluid using Xanthan Gum and Physillum husk and different weighting agents Barite and Calcium Carbonate at ambient conditions. The results showed that xanthan gum acts as good viscosifying agent as compared with physillum husk. In addition that, the water based drilling mud with barite which act as weighing agent proved better as compared with calcium carbonate. The following paper will be valuable to the graduates, future graduates and also to the Industry personnel have a basic idea about the rheology and how the parameters related to the rheology are valuable in mud design.


2017 ◽  
Vol 11 (1) ◽  
pp. 274-284
Author(s):  
Kaffayatullah Khan ◽  
Shaukat Ali Khan ◽  
Muhammad Umair Saleem ◽  
Muhammad Ashraf

Background: Bentonite clays are widely used in a drilling operation and play a vital role as a drilling fluid. Bentonite clay mud performs several functions during the drilling operation and facilitates the drilling process. Objective: In this study, the locally available raw bentonite clays were investigated to evaluate its potential use as a mud for borehole drilling operation after its improvement with the additives. Method: Rheological properties such as plastic viscosity, yield point and gel strength were evaluated by using a viscometer and filtrate loss test was performed by using filter press on both locally available raw bentonite clays and the commercial bentonite named as Mill gel. Results: From the test results obtained for the up gradation of clays with the different beneficiating materials, the drastic increase in the plastic viscosity, yield point and gel strength has been observed. It shows that Xanthum gum produced better results for the improvement of rheological properties of such clays. Carboxymethyl cellulose and starch were used as additives and it has been observed that carboxymethyl cellulose has improved both viscosity and filtrate loss control, whereas starch muds have the best filtration control properties. Conclusion: Improved bentonite clays have rheological and filtration characteristics that have satisfied American Petroleum Institute specification at optimum conditions of clay. It was concluded that improved clays are the suitable material for the drilling operations and suitable to substitute commercial bentonite.


Author(s):  
Zisis Vryzas ◽  
Omar Mahmoud ◽  
Hisham Nasr-El-Din ◽  
Vassilis Zaspalis ◽  
Vassilios C. Kelessidis

A successful drilling operation requires an effective drilling fluid system. Due to the variety of downhole conditions across the globe, the fluid system should be designed to meet complex challenges such as High-Pressure/High-Temperature (HPHT) environments, while promoting better productivity with a minimum interference for completion operations. This study aims to improve the rheological and fluid loss properties of water-bentonite suspensions by using both commercial (C-NP) and custom-made (CM-NP) iron oxide (Fe3O4) nanoparticles (NP) as drilling fluid additives. Superparamagnetic Fe3O4 NP were synthesized by the co-precipitation method. Both types of nanoparticles were characterized by a High Resolution Transmission Electron Microscope (TEM) and X-ray Diffraction (XRD). Base fluid (BF), made of deionized water and bentonite at 7wt%, was prepared according to American Petroleum Institute (API) procedures and nanoparticles were added at 0.5wt%. A Couette-type viscometer was used to analyze the rheological characteristics of these fluids at different shear rates and various temperatures (up to 158°F). The rheological parameters were obtained from analysis of viscometric data using non-linear regression. The API Low-Pressure/Low-Temperature (LPLT) and HPHT fluid filtrate volumes were measured, using a standard API LPLT static filter press (100 psi, 77°F) and an API HPHT filter press (300 psi, 250°F). Observation of the porous matrix morphology of the produced filter cakes was done with Scanning Electron Microscope (SEM). TEM showed that the mean diameter of the CM-NP was 7–8 nm, with measured surface areas between 100–250 m2/g. The C-NP had an average diameter of <50 nm, as per manufacturer specifications. The XRD of the CM-NP revealed peaks corresponding to pure crystallites of magnetite (Fe3O4) with no impurities. Rheological analysis showed very good fitting by the Herschel-Bulkley model with coefficient of determination (R2) greater than 0.99. Rheological properties of all samples were affected by higher temperatures, with increase in yield stress, decrease in flow consistency index (K) and slight increase in flow behavior index (n). Fluid filtration results indicated a decrease in the LPLT fluid loss and an increase in the filter cake thickness compared to the BF upon addition of higher concentrations of C-NP, because of a decrease in filter cake permeability. At HPHT conditions, samples with 0.5wt% C-NP had a smaller fluid loss by 34.3%, compared to 11.9% at LPLT conditions. CM-NP exhibited even higher reduction in the fluid loss at HPHT conditions of 40%. Such drilling fluids can solve difficult drilling problems and aid in achieving the reservoir’s highest potential by eliminating the use of aggressive, potentially damaging chemicals. Exploitation of the synergistic interaction of the utilized components can produce a water-based system with excellent fluid loss characteristics while maintaining optimal rheological properties.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Okorie E. Agwu ◽  
Anietie N. Okon ◽  
Francis D. Udoh

Oil-based mud (OBM) was formulated with soybean oil extracted from soybean using the Soxhlet extraction method. The formulated soybean mud properties were compared with diesel oil mud properties. The compared properties were rheological properties, yield point and gel strength, and mud density and filtration loss properties, fluid loss and filter cake. The results obtained show that the soybean oil mud exhibited Bingham plastic rheological model with applicable (low) yield point and gel strength when compared with the diesel oil mud. The mud density measurement showed that soybean OBM was slightly higher than diesel OBM with mud density values of 8.10 lb/gal and 7.98 lb/gal, respectively, at barite content of 10 g. Additionally, the filtration loss test results showed that soybean mud fluid loss volumes, water and oil, were 13 mL and 10 mL, respectively, compared to diesel oil mud volume of 15 mL and 12 mL. Furthermore, the filtration loss test indicated that the soybean oil mud with filter cake thickness of 2 mm had a cake characteristic of thin and soft while the diesel oil mud resulted in filter cake thickness of 2.5 mm with cake characteristic of firm and rubbery. In comparison with previous published works in the literature, the soybean oil mud exhibits superior rheological and filtration property over other vegetable oil-based muds. Therefore, the formulated soybean oil mud exhibited good drilling mud properties that would compare favourably with those of diesel oil muds. Its filter cake characteristic of thin and soft is desirable and significant to avert stuck pipe during drilling operations, meaning that an oil-based drilling mud could be formulated from soybean oil.


Author(s):  
Kevin C. Igwilo ◽  
N. Uwaezuoke ◽  
Raymond K. Onyekwere ◽  
Vivian C. Amaefule ◽  
Abimbola A. Durogbitan ◽  
...  

AbstractIn recent years, research using biomaterials in drilling fluid design has thrown light on their biodegradability, availability and low cost. Apart from these, they have in some cases shown properties superior to those of synthetic materials. This research assessed Mucuna solannie as a fluid loss control agent, looking at its fluid loss, filter cake quality, rheology and comparing them with those of Sodium Asphalt Sulfonate, a commonly used drilling mud additive. It assessed the additives at varying concentrations of 2 ppb, 4 ppb, 6 ppb and 8 ppb. The results obtained were filtrate volumes of 5.5 against 4.8 at 2 ppb, 5.0 against 4.5 at 4 ppb, 4.5 against 4.2 at 6 ppb, and 4.1 against 3.8 at 8 ppb, all at 30 min. Field standard value is 5.0 ml fluid loss. Filter cake thickness was1mm for all concentrations of Mucuna solannie. On rheology, plastic viscosity, yield point and yield stress were 27cP against 28cP, 19Ib/100ft2 against 19Ib/100ft2, and 5Ib/100ft2 against 6Ib/100ft2, showing slight difference in their rheological properties.


Author(s):  
Apriandi Rizkina Rangga Wastu ◽  
Muhammad Taufiq Fathaddin ◽  
Abdul Hamid

<p><em>In drilling operations, drilling mud plays a very important role because it is irreplaceable functions. Drilling activities relate to problems caused by complex conditions in formation due to changes in temperature, pressure, and contamination from formation fluids. Using Oil Base Mud (OBM) mud systems in the form of Saraline and Smooth Fluid 05 is tested for drilling fluid performance and the results can be a reference for drilling operation. This research consist of two parts, the first: determining the drilling mud rheology value in the form of (Plastic Viscosity, Yield Point and Gel Strength) in each drilling mud of Saraline and Smooth fluid 05 mud using various high temperature parameters of 350<sup>o</sup>F, 300<sup>o</sup>F, and 270<sup>o</sup>F. The results of the mud rheology tests show at the higher the temperature, the values of rheology decreases. The second experiment is to determine the level of electrical stability in the mud which functions of oil-wet content in oil sludge (Saraline and Smooth fluid 05). The electrical stability value has a minimum limit value in OBM, which is 500 volts. In this experiment showed that the higher the temperature value, the electrical stability value in the mud will decrease, but in this study the value of electrical stability in Saraline mud and Smooth fluid 05 has a value above 500 volts, the composition OBM of Saraline and Smooth Fluid 05 sludge has very good oilwet content</em><em>.</em></p>


2016 ◽  
Vol 864 ◽  
pp. 189-193 ◽  
Author(s):  
Abdul Razak Ismail ◽  
Wan Rosli Wan Sulaiman ◽  
Mohd Zaidi Jaafar ◽  
Issham Ismail ◽  
Elisabet Sabu Hera

Nanoparticles are used to study the rheological characteristics of drilling fluids. Nanoparticles have high surface to volume ratio, therefore only small quantity is required to blend in the drilling fluid. This research evaluates the performance of nanosilica and multi walled carbon nanotubes (MWCNT) as fluid loss additives in water based drilling fluid with various nanoparticles concentration and temperature. The results show that plastic viscosity, yield point and gel strength of drilling fluid increases as the concentration of nanoparticles increased. Drilling fluid with nanosilica gives the highest filtrate loss of 12 ml and mudcake thickness of 10 inch at 1 g concentration at 300°F. However, drilling fluid with MWCNT shows a decreasing trend in fluid loss and mudcake thickness. The results also show that xanthan gum containing 1 g of MWCNT gives 4.9 ml fluid loss and mudcake thickness of 4 inch at 200°F. After aging, plastic viscosity, yield point and gel strength of mud containing nanoparticles decrease significantly especially for 1 g of nanosilica and 0.01 g MWCNT. Fluid loss and mudcake thickness increased when the mud is exposed to temperature above 250°F. The results showed that xanthan gum with MWCNT gives a better rheological performance.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Osei H

High demand for oil and gas has led to exploration of more petroleum resources even at remote areas. The petroleum resources are found in deeper subsurface formations and drilling into such formations requires a well-designed drilling mud with suitable rheological properties in order to avoid or reduce associated drilling problems. This is because rheological properties of drilling muds have considerable effect on the drilling operation and cleaning of the wellbore. Mud engineers therefore use mud additives to influence the properties and functions of the drilling fluid to obtain the desired drilling mud properties especially rheological properties. This study investigated and compared the impact of barite and hematite as weighting agents for water-based drilling muds and their influence on the rheology. Water-based muds of different concentrations of weighting agents (5%, 10%, 15% and 20% of the total weight of the drilling mud) were prepared and their rheological properties determined at an ambient temperature of 24ᵒC to check their impact on drilling operation. The results found hematite to produce higher mud density, plastic viscosity, gel strength and yield point when compared to barite at the same weighting concentrations. The higher performance of the hematite-based muds might be attributed to it having higher specific gravity, better particle distribution and lower particle attrition rate and more importantly being free from contaminants. The water-based muds with hematite will therefore be more promising drilling muds with higher drilling and hole cleaning efficiency than those having barite.


Sign in / Sign up

Export Citation Format

Share Document