The Effects of Oil Palm Shell Aggregate Shape on the Thermal Properties and Density of Concrete

2014 ◽  
Vol 935 ◽  
pp. 172-175 ◽  
Author(s):  
Eravan Serri ◽  
M. Zailan Suleiman ◽  
M. Azree Othuman Mydin

Oil Palm Shell (OPS) are one of low thermal conductivity course aggregate for lightweight concrete. This paper report on all thermal properties parameter, thermal conductivity, specific heat and thermal diffusivity. Tree mixes of OPS of air dry density 1733 to 1811 kg/m3 and oven dry density 1502 to 1632 kg/m3 were prepaid and tested for thermal properties and compared with normal concrete using crushed granite as control and conventional materials. Raw shape with air density 1733 kg/m3 showed the lowest thermal properties with thermal conductivity, specific heat and thermal diffusivity of 0.59 W/mK, 1.352 MJ/m3K and 0.4414 mm2/s, respectively. All OPS mix can be consider as semi structure insulation material as per the RILEM classification which is thermal conductivity lower than 0.75 W/mK. High porosity content in concrete created act as an insulation characteristic and showed OPS have good potential as green insulation materials.

2014 ◽  
Vol 70 (1) ◽  
Author(s):  
Eravan Serri ◽  
Md Azree Othuman Mydin ◽  
Mohd Zailan Suleiman

Nowadays, the utilization of Oil Palm Shell (OPS) as lightweight aggregate in concrete especially in the structure application has become prevalent. As an industrial waste product, Oil Palm Shell (OPS) possibly will be the alternative material to be employed in the construction industry. With its advantage as heat resistant material, this study will focus on the potential of OPS as lightweight aggregate with regard to the optimum content of OPS for thermal insulating material. A total of 15 mixes were prepared and tested with 3 different cement/sand ratios (1.7, 1.8, 1.9) and 5 different cement contents (300, 350, 400, 450, 500 kg/m³). The result of this study show that the highest sand used will produced good workability but increased thermal conductivity of mix value. The test result indicates that the thermal conductivity and insulation criterion is substantially improved with the volume use of OPS and strong relationship between thermal conductivity and unit weight is obtained. The measured thermal conductivity value range from 0.54W/mC to 1.1 W/mC. The ideal value for semi structure insulation material establish by RILEM only  achieve for mix that used cement content 400 kg/m³ and below, which thermal conductivity is 0.75 W/mC below.  


Author(s):  
Messiha Saad ◽  
Darryl Baker ◽  
Rhys Reaves

Thermal properties of materials such as specific heat, thermal diffusivity, and thermal conductivity are very important in the engineering design process and analysis of aerospace vehicles as well as space systems. These properties are also important in power generation, transportation, and energy storage devices including fuel cells and solar cells. Thermal conductivity plays a critical role in the performance of materials in high temperature applications. Thermal conductivity is the property that determines the working temperature levels of the material, and it is an important parameter in problems involving heat transfer and thermal structures. The objective of this research is to develop thermal properties data base for carbon-carbon and graphitized carbon-carbon composite materials. The carbon-carbon composites tested were produced by the Resin Transfer Molding (RTM) process using T300 2-D carbon fabric and Primaset PT-30 cyanate ester. The graphitized carbon-carbon composite was heat treated to 2500°C. The flash method was used to measure the thermal diffusivity of the materials; this method is based on America Society for Testing and Materials, ASTM E1461 standard. In addition, the differential scanning calorimeter was used in accordance with the ASTM E1269 standard to determine the specific heat. The thermal conductivity was determined using the measured values of their thermal diffusivity, specific heat, and the density of the materials.


2021 ◽  
Vol 407 ◽  
pp. 185-191
Author(s):  
Josef Tomas ◽  
Andreas Öchsner ◽  
Markus Merkel

Experimental analyses are performed to determine thermal conductivity, thermal diffusivity and volumetric specific heat with transient plane source method on hollow sphere structures. Single-sided testing is used on different samples and different surfaces. Results dependency on the surface is observed.


2010 ◽  
Vol 14 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Sunday Etuk ◽  
Louis Akpabio ◽  
Ita Akpan

Thermal conductivity values at the temperature of 301-303K have been measured for Zea mays straw board as well as Zea mays heartwood (cork) board. Comparative study of the thermal conductivity values of the boards reveal that Zea mays heartwood board has a lower thermal conductivity value to that of the straw board. The study also shows that the straw board is denser than the heartwood board. Specific heat capacity value is less in value for the heartwood board than the straw board. These parameters also affect the thermal diffusivity as well as thermal absorptivity values for the two types of boards. The result favours the two boards as thermal insulators for thermal envelop but with heartwood board as a preferred insulation material than the straw board.


Author(s):  
Siti Shahirah Suhaili ◽  
Md Azree Othuman Mydin ◽  
Hanizam Awang

The addition of mesocarp fibre as a bio-composite material in foamed concrete can be well used in building components to provide energy efficiency in the buildings if the fibre could also offer excellent thermal properties to the foamed concrete. It has practical significance as making it a suitable material for building that can reduce heat gain through the envelope into the building thus improved the internal thermal comfort. Hence, the aim of the present study is to investigate the influence of different volume fractions of mesocarp fibre on thermal properties of foamed concrete. The mesocarp fibre was prepared with 10, 20, 30, 40, 50 and 60% by volume fraction and then incorporated into the 600, 1200 and 1800 kg/m3 density of foamed concrete with constant cement-sand ratio of 1:1.5 and water-cement ratio of 0.45. Hot disk thermal constant analyser was used to attain the thermal conductivity, thermal diffusivity and specific heat capacity of foamed concrete of various volume fractions and densities. From the experimental results, it had shown that addition of mesocarp fibre of 10-40% by volume fraction resulting in low thermal conductivity and specific heat capacity and high the thermal diffusivity of foamed concrete with 600 and 1800 kg/m3 density compared to the control mix while the optimum amount of mesocarp fibre only limit up to 30% by volume fraction for 1200 kg/m3 density compared to control mix. The results demonstrated a very high correlation between thermal conductivity, thermal diffusivity and specific heat capacity which R2 value more than 90%.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ming Kun Yew ◽  
Hilmi Bin Mahmud ◽  
Bee Chin Ang ◽  
Ming Chian Yew

The objective of this study was to investigate the effects of different species of oil palm shell (OPS) coarse aggregates on the properties of high strength lightweight concrete (HSLWC). Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study. The research focused on two OPS species (duraandtenera), in which the coarse aggregates were taken from oil palm trees of the following age categories (3–5, 6–9, and 10–15 years old). The results showed that the workability and dry density of the oil palm shell concrete (OPSC) increase with an increase in age category of OPS species. The compressive strength of specimen CD3 increases significantly compared to specimen CT3 by 21.8%. The maximum achievable 28-day and 90-day compressive strength is 54 and 56 MPa, respectively, which is within the range for 10–15-year-old crushedduraOPS. The water absorption was determined to be within the range for good concrete for the different species of OPSC. In addition, the ultrasonic pulse velocity (UPV) results showed that the OPS HSLWC attain good condition at the age of 3 days.


2015 ◽  
Vol 747 ◽  
pp. 217-220
Author(s):  
Eravan Serri ◽  
Mohd Zailan Sulieman ◽  
Md Azree Othuman Mydin

This paper presents a solid agricultural solid waste, namely oil palm shell (OPS) as coarse aggregate to produce insulation concrete. This study will investigate the porosity, air permeability and thermal conductivity of OPS lightweight concrete (OPSLC). Nine mix designs were developed which comprised three OPS shapes and three volume fractions of OPS. The results indicated that increased volume fraction of OPS caused decreased durability performance and thermal conductivity. The shape of OPS is found to have significant effects to the porosity content and air permeability values. Thus, there is a strong relationship between porosity content and air permeability for all specimens. Based on the results, all specimens are found to be in the range of insulation concrete category except for specimen C-30, which has more than 0.75W/mK thermal conductivity according to RILEM requirement. The thermal conductivity of OPSLC is comparable with artificial lightweight aggregate.


2020 ◽  
Vol 45 (4) ◽  
pp. 71-80
Author(s):  
Ide Ejike ◽  
Ike Oluka ◽  
Eze Chukwuka

The specific heat, thermal conductivity and thermal diffusivity of the Horse-Eye bean (Mucuna sloanei) were determined as a function of moisture content using the method reported by A.O.A.C (2000). The sample varieties used were the Big Sized and the Small Sized Horse-Eye bean. The specific heat and the thermal conductivity were measured using a Bomb Calorimeter. The thermal diffusivity was calculated from the measured specific heat, thermal conductivity and bulk density of the samples. Within the moisture range of 10.5% to 16.87% (b.b), the specific heat, thermal conductivity and thermal diffusivity varied with the moisture content. Results showed that the specific heat, thermal conductivity and thermal diffusivity of the Horse-Eye bean seeds ranged from 116.76 to 203.29 kJ/kgK; 21.07 to 32.23 W/moC; and 3.12 x 10-7 to 9.19 x 10-7 m 2 /s, for the Big Sized varieties, and 112.06 to 194.61 kJ/kgK; 19.85 to 24.08 W/moC; and 3.05 x 10-7 to 6.71 x 10-7 m 2 /s, for the Small Sized varieties as the moisture content increases from 10.5% to 16.87%. Regression analysis were also carried out on the thermal properties of the Horse-Eye bean varieties and moisture content, and there was positive relationship between the parameters. There were significant effects of moisture content (p < 0.05) on all the parameters conducted. The findings and the data generated will create an impact in the food processing industries for Horse-Eye bean.


Sign in / Sign up

Export Citation Format

Share Document