Methanol to Gasoline over La/HZSM-5 Catalyst Modified by Na2CO3

2014 ◽  
Vol 953-954 ◽  
pp. 1215-1220
Author(s):  
Xiao Feng Gao ◽  
Chuan Min Ding ◽  
Wei Li Liu ◽  
Jun Wen Wang ◽  
Kan Zhang ◽  
...  

HZSM-5 catalysts with SiO2/Al2O3 molar ratio of 80 were treated with 0.4 mol/L Na2CO3 solution at 80°C for 2 h to improve diffusion properties. Further, some of these catalysts were modified by impregnation of La (NO3)3. These catalysts characterized by XRD and BET were evaluated in a fixed bed reactor for conversion of methanol to gasoline (MTG) reaction. The Na2CO3 treatment results in formation of mesoporous structure in ZSM-5 zeolite. Meanwhile, LaZSM-5/AT catalyst exhibits significantly enhancement in catalytic lifetime and liquid hydrocarbons yield as well as selectivity of isoparaffin and olefin. The conversion of methanol remains above 80 % over 125 h on LaZSM-5/AT catalyst under atmospheric pressure, 380°C and weight hourly space velocities (WHSV) of 1.5 h-1.

2010 ◽  
Vol 132 ◽  
pp. 228-235 ◽  
Author(s):  
Xu Li ◽  
Guan Zhong Lu ◽  
Yang Long Guo ◽  
Yun Guo ◽  
Yan Qin Wang

A novel solid superbase catalyst of La2O3-ZnO/ZrO2 was prepared, and its H– value (Hammett function) of surface basic strength reaches 26.5. The catalytic activity of La2O3-ZnO/ZrO2 was evaluated for the transesterification of soybean oil (SBO) with methanol to biodiesel in a fixed bed reactor under atmospheric pressure. The results show that the chemical composition of the La2O3-ZnO/ZrO2 catalyst influences both its H– value and catalytic performance, the appropriate content of ZrO2 is 60 wt.% and the La2O3/ZnO molar ratio is 4~5/1. La2O3-ZnO/ZrO2 is an effective catalyst for the transesterification of SBO, and the SBO conversion reaches 71.3% at 70°C for 12h.


2014 ◽  
Vol 1008-1009 ◽  
pp. 295-299 ◽  
Author(s):  
Xiao Feng Gao ◽  
Chuan Min Ding ◽  
Wei Li Liu ◽  
Lin Feng Fan ◽  
Gang Song ◽  
...  

Fixed bed reactor was used to explore the catalytic performance of ZSM-5 catalysts with the forms of flake and strip in methanol to gasoline (MTG) reaction. The catalyst samples were characterized by XRD, BET and SEM. The strip ZSM-5 catalyst was modified by 0.4 Molar NaOH solution, which was denoted by TZSM-5/AT. The results show that ZSM-5 molecular sieves could be effectively dispersed to prevent carbon accumulation when extruded with binder. So the coke deposition resistance capacity of strip ZSM-5 has significantly enhancement comparing with flake ZSM-5. Mesoporous structure in strip zeolites formed after NaOH treatment, which could prevent coke formation and further improve catalyst life. The conversion of methanol remains above 80% over 140 hours on alkali-modified strip ZSM-5 operating at atmospheric pressure, 380°C and weight hourly space velocities (WHSV) of 1.5 h-1.


Author(s):  
Radwa A. El-Salamony ◽  
Sara A. El-Sharaky ◽  
Seham A. Al-Temtamy ◽  
Ahmed M. Al-Sabagh ◽  
Hamada M. Killa

Abstract Recently, because of the increasing demand for natural gas and the reduction of greenhouse gases, interests have focused on producing synthetic natural gas (SNG), which is suggested as an important future energy carrier. Hydrogenation of CO2, the so-called methanation reaction, is a suitable technique for the fixation of CO2. Nickel supported on yttrium oxide and promoted with cobalt were prepared by the wet-impregnation method respectively and characterized using SBET, XRD, FTIR, XPS, TPR, and HRTEM/EDX. CO2 hydrogenation over the Ni/Y2O3 catalyst was examined and compared with Co–Ni/Y2O3 catalysts, Co% = 10 and 15 wt/wt. The catalytic test was conducted with the use of a fixed-bed reactor under atmospheric pressure. The catalytic performance temperature was 350 °C with a supply of H2:CO2 molar ratio of 4 and a total flow rate of 200 mL/min. The CH4 yield was reached 67%, and CO2 conversion extended 48.5% with CO traces over 10Co–Ni/Y2O3 catalyst. This encourages the direct methanation reaction mechanism. However, the reaction mechanism over Ni/Y2O3 catalyst shows different behaviors rather than that over bi-metal catalysts, whereas the steam reforming of methane reaction was arisen associated with methane consumption besides increase in H2 and CO formation; at the same temperature reaction.


2012 ◽  
Vol 1 (3) ◽  
pp. 81 ◽  
Author(s):  
A Buasri ◽  
B Ksapabutr ◽  
M Panapoy ◽  
N Chaiyut

: The continuous production of ethyl ester was studied by using a steady-state fixed bed reactor (FBR). Transesterification of palm stearin (PS) and waste cooking palm oil (WCPO) with ethanol in the presence of calcium oxide impregnated palm shell activated carbon (CaO/PSAC) solid catalyst was investigated. This work was determined the optimum conditions for the production of ethyl ester from PS and WCPO in order to obtain fatty acid ethyl ester (FAEE) with the highest yield. The effects of reaction variables such as residence time, ethanol/oil molar ratio, reaction temperature, catalyst bed height and reusability of catalyst in a reactor system on the yield of biodiesel were considered. The optimum conditions were the residence time 2-3 h, ethanol/oil molar ratio 16-20, reaction temperature at 800C, and catalyst bed height 300 mm which yielded 89.46% and 83.32% of the PS and WCPO conversion, respectively. CaO/PSAC could be used repeatedly for 4 times without any activation treatment and no obvious activity loss was observed. It has potential for industrial application in the transesterification of triglyceride (TG). The fuel properties of biodiesel were determined. Keywords: biodiesel, calcium oxide, ethyl ester, fixed bed reactor, palm shell activated carbon


2014 ◽  
Vol 1010-1012 ◽  
pp. 947-951
Author(s):  
Jin Wei Jia ◽  
Ming Yuan Lu ◽  
Yue Fu Yuan ◽  
Lu Liu ◽  
Feng Sheng Yang ◽  
...  

An experimental study on co-pyrolysis of municipal solid waste and corn stalk was performed in a fixed-bed reactor under atmospheric pressure. The effect of different blending ratio on the pyrolysis product yields and compositions of the gaseous products was investigated. The results indicated that there exist synergetic effects in the co-pyrolysis of municipal solid waste and corn stalk. Under the different blending ratio conditions, the char and liquid yields were lower than the theoretical values calculated on pyrolysis of each individual municipal solid waste and corn stalk, and consequently the gas yields were higher. H2 and CH4 obtained co-pyrolysis at 800°C-900°C of 40% blending ratio conditions were higher than those of municipal solid waste and corn stalk alone.


2011 ◽  
Vol 236-238 ◽  
pp. 1067-1072
Author(s):  
Li Ping Liu ◽  
Xiao Jian Ma ◽  
Peng Zhang ◽  
Ya Nan Liu

Hydrogen production by ethanol steam reforming over Ni-Cu/ZnO catalyst in the temperatures range of 250-550°C was studied on a fixed bed reactor. The effects of reaction temperature and water/ethanol molar ratio on hydrogen production were investigated. The structure and surface characteristics of the catalyst were measured by scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential thermal analyzer (TG-DSC). The results show that the Ni-Cu/ZnO catalyst has good catalytic performance with higher hydrogen yield of 4.87molH2/molEtOH reacted. A comparison of hydrogen production from ethanol steam reforming over Ni-Cu/ZnO catalyst with over a commercial catalyst was made in this paper.


Author(s):  
Rusmi Alias ◽  
Atiqah Mohd Rafee

The aim of this study is to characterise the liquid oil produced from pyrolysis of waste tyre. In this study, a series of experiment were carried out at various process temperature from 300 °C to 500 °C. The degradation study was carried out by using TGA, meanwhile the pyrolysis process was done using a fixed bed reactor. Liquid oil obtained from the pyrolysis was analysed using FTIR and GC-MS. The oil yield was found to decrease with increasing final pyrolysis temperature and the yield of the gas increased. The highest oil yield was 58.3 wt. %. For pyrolysis at 400 °C. The pyrolysis of waste tyre at atmospheric pressure commenced at about 340 °C and completed at 460 °C. An increase in the aromatic content of the oil was observed with increasing temperature. However, the aliphatic content decreased as the temperature increased from 300 °C to 500 °C. It was observed that the amount of aliphatic fraction in the oil decreased from 7.8 wt. % to 5.4 wt. %. In the meantime, the number of aromatic compounds increased from 37.4 wt. % to 51.2 wt. %. The main aromatic compounds were limonene, xylene, styrene, toluene, trimethylbenzene, ethylbenzene and benzene.


2021 ◽  
Vol 259 ◽  
pp. 04001
Author(s):  
Zane Abelniece ◽  
Valdis Kampars ◽  
Helle-Mai Piirsoo ◽  
Aile Tamm

CuO on mesoporous silica catalyst was prepared with post synthesis impregnation method, and the effects of Al and Co promoters on CuO/SBA-15/kaolinite catalyst properties and CO2 hydrogenation were studied. The mixing technology with kaolinite clay (containing Al2O3) was used to obtain the granules and to enhance the CO2 conversion to methanol as a product. The performance of all catalysts for catalytic hydrogenation of CO2 was evaluated on a fixed-bed tubular micro-activity reactor at 20 bar and 250°C with H2/CO2 molar ratio 3:1. XRD analysis, N2 adsorption-desorption analysis and SEM-EDX analysis indicated that the mesoporous structure of SBA-15 remains after loading with CuO and promoters, and after mixing with kaolinite clay. Results were compared with results obtained with commercial CuO/Al2O3 catalyst, which showed high MeOH selectivity (78%) during CO2 hydrogenation reaction.


Sign in / Sign up

Export Citation Format

Share Document