Effect of Shape and Modification over ZSM-5 Catalyst on Methanol to Gasoline

2014 ◽  
Vol 1008-1009 ◽  
pp. 295-299 ◽  
Author(s):  
Xiao Feng Gao ◽  
Chuan Min Ding ◽  
Wei Li Liu ◽  
Lin Feng Fan ◽  
Gang Song ◽  
...  

Fixed bed reactor was used to explore the catalytic performance of ZSM-5 catalysts with the forms of flake and strip in methanol to gasoline (MTG) reaction. The catalyst samples were characterized by XRD, BET and SEM. The strip ZSM-5 catalyst was modified by 0.4 Molar NaOH solution, which was denoted by TZSM-5/AT. The results show that ZSM-5 molecular sieves could be effectively dispersed to prevent carbon accumulation when extruded with binder. So the coke deposition resistance capacity of strip ZSM-5 has significantly enhancement comparing with flake ZSM-5. Mesoporous structure in strip zeolites formed after NaOH treatment, which could prevent coke formation and further improve catalyst life. The conversion of methanol remains above 80% over 140 hours on alkali-modified strip ZSM-5 operating at atmospheric pressure, 380°C and weight hourly space velocities (WHSV) of 1.5 h-1.

2014 ◽  
Vol 962-965 ◽  
pp. 751-754 ◽  
Author(s):  
Wang Feng ◽  
Bai Ting ◽  
Duan Chao ◽  
Wen Ting Qu ◽  
Xi Ling Liu ◽  
...  

The catalytic performance on HZSM-5/SAPO-34 catalyst in ethanol to propylene was tested in continuous-flow fixed-bed reactor. Coke on HZSM-5/SAPO-34 catalyst for ethanol to propylene was studied by O2-TPO, N2isothermal adsorption–desorption and NH3-TPD.The result showed that the strong and medium acid sites were the active centers of coke deposition; Coke mainly deposited in mesoporous and some coke blocked microporous orifice; In the initial stage of reaction, the high yield of propylene may be benefited from coke deposition, which adjusted the acidity and structure of HZSM-5/SAPO-34.


2017 ◽  
Vol 42 (4) ◽  
pp. 344-360
Author(s):  
Milad Komasi ◽  
Shohreh Fatemi ◽  
Seyed Hesam Mousavi

Pt–Sn/hierarchical SAPO-34 was synthesised and kinetically modelled as an efficient and selective catalyst for propylene production through propane dehydrogenation. The kinetics of the reaction network were studied in an integral fixed-bed reactor at three temperatures of 550, 600 and 650 °C and weight hourly space velocities of 4 and 8 h−1 with a feed containing hydrogen and propane with relative molar ratios of 0.2, 0.5 and 0.8, at normal pressure. The experiments were performed in accordance with the full factorial experimental design. The kinetic models were constructed on the basis of different mechanisms and various deactivation models. The kinetics and deactivation parameters were simultaneously predicted and optimised using genetic algorithm optimisation. It was further proven that the Langmuir–Hinshelwood model can well predict propane dehydrogenation kinetics through lumping together all the possible dehydrogenation steps and also by assuming the surface reaction as the rate-determining step. A coke formation kinetic model has also shown appropriate results, confirming the experimental data by equal consideration of both monolayer and multilayer coke deposition kinetic orders and an exponential deactivation model.


2014 ◽  
Vol 953-954 ◽  
pp. 1215-1220
Author(s):  
Xiao Feng Gao ◽  
Chuan Min Ding ◽  
Wei Li Liu ◽  
Jun Wen Wang ◽  
Kan Zhang ◽  
...  

HZSM-5 catalysts with SiO2/Al2O3 molar ratio of 80 were treated with 0.4 mol/L Na2CO3 solution at 80°C for 2 h to improve diffusion properties. Further, some of these catalysts were modified by impregnation of La (NO3)3. These catalysts characterized by XRD and BET were evaluated in a fixed bed reactor for conversion of methanol to gasoline (MTG) reaction. The Na2CO3 treatment results in formation of mesoporous structure in ZSM-5 zeolite. Meanwhile, LaZSM-5/AT catalyst exhibits significantly enhancement in catalytic lifetime and liquid hydrocarbons yield as well as selectivity of isoparaffin and olefin. The conversion of methanol remains above 80 % over 125 h on LaZSM-5/AT catalyst under atmospheric pressure, 380°C and weight hourly space velocities (WHSV) of 1.5 h-1.


Author(s):  
Radwa A. El-Salamony ◽  
Sara A. El-Sharaky ◽  
Seham A. Al-Temtamy ◽  
Ahmed M. Al-Sabagh ◽  
Hamada M. Killa

Abstract Recently, because of the increasing demand for natural gas and the reduction of greenhouse gases, interests have focused on producing synthetic natural gas (SNG), which is suggested as an important future energy carrier. Hydrogenation of CO2, the so-called methanation reaction, is a suitable technique for the fixation of CO2. Nickel supported on yttrium oxide and promoted with cobalt were prepared by the wet-impregnation method respectively and characterized using SBET, XRD, FTIR, XPS, TPR, and HRTEM/EDX. CO2 hydrogenation over the Ni/Y2O3 catalyst was examined and compared with Co–Ni/Y2O3 catalysts, Co% = 10 and 15 wt/wt. The catalytic test was conducted with the use of a fixed-bed reactor under atmospheric pressure. The catalytic performance temperature was 350 °C with a supply of H2:CO2 molar ratio of 4 and a total flow rate of 200 mL/min. The CH4 yield was reached 67%, and CO2 conversion extended 48.5% with CO traces over 10Co–Ni/Y2O3 catalyst. This encourages the direct methanation reaction mechanism. However, the reaction mechanism over Ni/Y2O3 catalyst shows different behaviors rather than that over bi-metal catalysts, whereas the steam reforming of methane reaction was arisen associated with methane consumption besides increase in H2 and CO formation; at the same temperature reaction.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3347
Author(s):  
Arslan Mazhar ◽  
Asif Hussain Khoja ◽  
Abul Kalam Azad ◽  
Faisal Mushtaq ◽  
Salman Raza Naqvi ◽  
...  

Co/TiO2–MgAl2O4 was investigated in a fixed bed reactor for the dry reforming of methane (DRM) process. Co/TiO2–MgAl2O4 was prepared by modified co-precipitation, followed by the hydrothermal method. The active metal Co was loaded via the wetness impregnation method. The prepared catalyst was characterized by XRD, SEM, TGA, and FTIR. The performance of Co/TiO2–MgAl2O4 for the DRM process was investigated in a reactor with a temperature of 750 °C, a feed ratio (CO2/CH4) of 1, a catalyst loading of 0.5 g, and a feed flow rate of 20 mL min−1. The effect of support interaction with metal and the composite were studied for catalytic activity, the composite showing significantly improved results. Moreover, among the tested Co loadings, 5 wt% Co over the TiO2–MgAl2O4 composite shows the best catalytic performance. The 5%Co/TiO2–MgAl2O4 improved the CH4 and CO2 conversion by up to 70% and 80%, respectively, while the selectivity of H2 and CO improved to 43% and 46.5%, respectively. The achieved H2/CO ratio of 0.9 was due to the excess amount of CO produced because of the higher conversion rate of CO2 and the surface carbon reaction with oxygen species. Furthermore, in a time on stream (TOS) test, the catalyst exhibited 75 h of stability with significant catalytic activity. Catalyst potential lies in catalyst stability and performance results, thus encouraging the further investigation and use of the catalyst for the long-run DRM process.


2011 ◽  
Vol 347-353 ◽  
pp. 3681-3684 ◽  
Author(s):  
Young Ho Kim ◽  
Su Gyung Lee ◽  
Byoung Kwan Yoo ◽  
Han Sol Je ◽  
Chu Sik Park

A SAPO-34 catalyst is well known to be one of the best catalysts for DME to olefins (DTO) reaction. Main products of the reaction were light olefins such as ethylene, propylene and butenes. However, the main problem is rapid deactivation of the SAPO-34 catalyst due to coke deposition during DTO reaction. In this study, various SAPO-34/ZrO2 catalysts added with ZrO2 were prepared for improving the lifetime and their physicochemical properties have been characterized by XRD and SEM. The DTO reaction over various SAPO-34/ZrO2 catalysts was carried out using a fixed bed reactor. All SAPO-34/ZrO2 catalysts showed similar activity and selectivity in the DTO reaction. The SAPO-34(9wt%)/ZrO2 catalyst was showed the best performance for the catalyst lifetime.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ahmad Asghari ◽  
Mohammadreza Khanmohammadi Khorrami ◽  
Sayed Habib Kazemi

AbstractThe present work introduces a good prospect for the development of hierarchical catalysts with excellent catalytic performance in the methanol to aromatic hydrocarbons conversion (MTA) process. Hierarchical H-ZSM5 zeolites, with a tailored pore size and different Si/Al ratios, were synthesized directly using natural kaolin clay as a low-cost silica and aluminium resource. Further explored for the direct synthesis of hierarchical HZSM-5 structures was the steam assisted conversion (SAC) with a cost-effective and green affordable saccharide source of high fructose corn syrup (HFCS), as a secondary mesopore agent. The fabricated zeolites exhibiting good crystallinity, 2D and 3D nanostructures, high specific surface area, tailored pore size, and tunable acidity. Finally, the catalyst performance in the conversion of methanol to aromatic hydrocarbons was tested in a fixed bed reactor. The synthesized H-ZSM5 catalysts exhibited superior methanol conversion (over 100 h up to 90%) and selectivity (over 85%) in the methanol conversion to aromatic hydrocarbon products.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1374
Author(s):  
Andreas Brune ◽  
Andreas Seidel-Morgenstern ◽  
Christof Hamel

This study intends to provide insights into various aspects related to the reaction kinetics of the VOx catalyzed propane dehydrogenation including main and side reactions and, in particular, catalyst deactivation and regeneration, which can be hardly found in combination in current literature. To kinetically describe the complex reaction network, a reduced model was fitted to lab scale experiments performed in a fixed bed reactor. Additionally, thermogravimetric analysis (TGA) was applied to investigate the coking behavior of the catalyst under defined conditions considering propane and propene as precursors for coke formation. Propene was identified to be the main coke precursor, which agrees with results of experiments using a segmented fixed bed reactor (FBR). A mechanistic multilayer-monolayer coke growth model was developed to mathematically describe the catalyst coking. Samples from long-term deactivation experiments in an FBR were used for regeneration experiments with oxygen to gasify the coke deposits in a TGA. A power law approach was able to describe the regeneration behavior well. Finally, the results of periodic experiments consisting of several deactivation and regeneration cycles verified the long-term stability of the catalyst and confirmed the validity of the derived and parametrized kinetic models for deactivation and regeneration, which will allow model-based process development and optimization.


2011 ◽  
Vol 356-360 ◽  
pp. 1528-1534
Author(s):  
Wei Fang Dong

A series of non-precious metal oxides catalysts were prepared for low-temperature selective catalytic reduction (SCR) of NOx with NH3 in a fixed bed reactor. The catalytic performance was evaluated by the removal efficiency of NOx and N2selectivity which were respectively detected by flue gas analyzer and flue gas chromatograph. Furthermore, the components of gas products from the above experiments were analysed with 2010 GC-MS. The results illustrated that the MnO2exhibited the highest NOx conversion to 95.46% and the highest selectivity of N2to 100% at temperature of 393K, then followed ZrO2, Al2O3and Fe2O3.


2015 ◽  
Vol 802 ◽  
pp. 431-436
Author(s):  
Siti Aminah Md Ali ◽  
Ku Halim Ku Hamid ◽  
Kamariah Noor Ismail

Five series of silica supported bimetallic oxide (NiCo/SiO2) catalysts have been synthesized through successive reverse co-precipitation and wet impregnation methods at different metal loadings (i.e. 80Ni20Co/SiO2,, 60Ni40Co/SiO2,50Ni50Co/SiO2,40Ni60Co/SiO2,20Ni80Co/SiO2). The catalytic performance of these catalysts were tested for the CO2methanation catalysis using microactivity fixed bed reactor. Nickel rich catalyst (80Ni20Co/SiO2) exhibited the highest catalytic activity in the CO2methanation with 47.1% of CO2conversion. Meanwhile, the CH4selectivity and yield was found to be at 99.9% and 27%, respectively.


Sign in / Sign up

Export Citation Format

Share Document