Effects of Soil Moisture on Nitrogen Mineralization in a Typical 10-Year Floodplain Wetland

2014 ◽  
Vol 955-959 ◽  
pp. 1216-1219
Author(s):  
Zhao Qin Gao ◽  
Jun Hong Bai ◽  
Di Chen ◽  
Qing Qing Zhao ◽  
Jun Jing Wang ◽  
...  

Soil profiles from 0 to 80 cm depth were collected and a 14-day incubation experiment at three soil moisture levels (initial moisture, water holding capacity, and flooding) was carried out at 25°C in the dark to reveal the effects of soil moisture on nitrogen mineralization rates in a 10-yr floodplain wetland. Our results showed that nitrogen mineralization rates decreased with depth along soil profiles and the maximal nitrogen mineralization rates appeared at the 10-20cm soil layer. The nitrogen mineralization rates were higher under flooding treatment compared to another two soil moisture treatments. Nitrogen mineralization rates in the top 20cm soils exhibited an increasing tendency with increasing soil moisture. Additionally, nitrogen mineralization rates were significantly correlated with electrical conductivity, total soluble salt, and salinity under three soil moisture treatments.

2014 ◽  
Vol 1010-1012 ◽  
pp. 381-384
Author(s):  
Zhao Qin Gao ◽  
Jun Hong Bai ◽  
Di Chen ◽  
Qing Qing Zhao ◽  
Jun Jing Wang

Soil profiles from 0 to 80 cm depth were collected at five typical zones (including permanently flooded floodplain (B), 1-year floodplain (O), 5-year floodplain (F), 10-year floodplain (T), and 100-year floodplain (H)) which are divided by different flooding frequencies along the direction penperdicular to the river channel in different floodplain wetlands of Xianghai National Nature Reserve of China. A 14-day incubation experiment was carried out at 25°C in the dark to reveal the effects of different flooding frequencies on nitrogen mineralization rates. Our results showed that nitrogen mineralization rates showed an alternative tend of “increasing and decreasing”in the soil profiles at five sampling zones except the 1-year floodplain and permanent floodplain. The nitrogen mineralization rates were lower in permanently flooded floodplain soils compared to another four floodplain wetlands with different flooding frequencies. Additionally, nitrogen mineralization rates were significantly correlated with electrical conductivity, total soluble salt, pH values and salinity.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 114
Author(s):  
Katarzyna Pentoś ◽  
Krzysztof Pieczarka ◽  
Kamil Serwata

Soil spatial variability mapping allows the delimitation of the number of soil samples investigated to describe agricultural areas; it is crucial in precision agriculture. Electrical soil parameters are promising factors for the delimitation of management zones. One of the soil parameters that affects yield is soil compaction. The objective of this work was to indicate electrical parameters useful for the delimitation of management zones connected with soil compaction. For this purpose, the measurement of apparent soil electrical conductivity and magnetic susceptibility was conducted at two depths: 0.5 and 1 m. Soil compaction was measured for a soil layer at 0–0.5 m. Relationships between electrical soil parameters and soil compaction were modelled with the use of two types of neural networks—multilayer perceptron (MLP) and radial basis function (RBF). Better prediction quality was observed for RBF models. It can be stated that in the mathematical model, the apparent soil electrical conductivity affects soil compaction significantly more than magnetic susceptibility. However, magnetic susceptibility gives additional information about soil properties, and therefore, both electrical parameters should be used simultaneously for the delimitation of management zones.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong-wang Zhang ◽  
Kai-bo Wang ◽  
Jun Wang ◽  
Changhai Liu ◽  
Zhou-ping Shangguan

AbstractChanges in land use type can lead to variations in soil water characteristics. The objective of this study was to identify the responses of soil water holding capacity (SWHC) and soil water availability (SWA) to land use type (grassland, shrubland and forestland). The soil water characteristic curve describes the relationship between gravimetric water content and soil suction. We measured the soil water characteristic parameters representing SWHC and SWA, which we derived from soil water characteristic curves, in the 0–50 cm soil layer at sites representing three land use types in the Ziwuling forest region, located in the central part of the Loess Plateau, China. Our results showed that the SWHC was higher at the woodland site than the grassland and shrubland, and there was no significant difference between the latter two sites, the trend of SWA was similar to the SWHC. From grassland to woodland, the soil physical properties in the 0–50 cm soil layer partially improved, BD was significantly higher at the grassland site than at the shrubland and woodland sites, the clay and silt contents decreased significantly from grassland to shrubland to woodland and sand content showed the opposite pattern, the soil porosity was higher in the shrubland and woodland than that in the grassland, the soil physical properties across the 0–50 cm soil layer improved. Soil texture, porosity and bulk density were the key factors affecting SWHC and SWA. The results of this study provide insight into the effects of vegetation restoration on local hydrological resources and can inform soil water management and land use planning on the Chinese Loess Plateau.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 708
Author(s):  
Phanthasin Khanthavong ◽  
Shin Yabuta ◽  
Hidetoshi Asai ◽  
Md. Amzad Hossain ◽  
Isao Akagi ◽  
...  

Flooding and drought are major causes of reductions in crop productivity. Root distribution indicates crop adaptation to water stress. Therefore, we aimed to identify crop roots response based on root distribution under various soil conditions. The root distribution of four crops—maize, millet, sorghum, and rice—was evaluated under continuous soil waterlogging (CSW), moderate soil moisture (MSM), and gradual soil drying (GSD) conditions. Roots extended largely to the shallow soil layer in CSW and grew longer to the deeper soil layer in GSD in maize and sorghum. GSD tended to promote the root and shoot biomass across soil moisture status regardless of the crop species. The change of specific root density in rice and millet was small compared with maize and sorghum between different soil moisture statuses. Crop response in shoot and root biomass to various soil moisture status was highest in maize and lowest in rice among the tested crops as per the regression coefficient. Thus, we describe different root distributions associated with crop plasticity, which signify root spread changes, depending on soil water conditions in different crop genotypes as well as root distributions that vary depending on crop adaptation from anaerobic to aerobic conditions.


2013 ◽  
Vol 726-731 ◽  
pp. 3803-3806
Author(s):  
Bing Ru Liu ◽  
Jun Long Yang

In order to revel aboveground biomass of R. soongorica shrub effect on soil moisture and nutrients spatial distribution, and explore mechanism of the changes of soil moisture and nutrients, soil moisture content, pH, soil organic carbon (SOC) and total nitrogen (TN) at three soil layers (0-10cm,10-20cm, and 20-40cm) along five plant biomass gradients of R. soongorica were investigated. The results showed that soil moisture content increased with depth under the same plant biomass, and increased with plant biomass. Soil nutrient properties were evidently influenced with plant biomass, while decreased with depth. SOC and TN were highest in the top soil layer (0-10 cm), but TN of 10-20cm layer has no significant differences (P < 0.05). Moreover, soil nutrient contents were accumulated very slowly. These suggests that the requirement to soil organic matter is not so high and could be adapted well to the desert and barren soil, and the desert plant R. soongorica could be acted as an important species to restore vegetation and ameliorate the eco-environment.


2021 ◽  
Vol 64 (1) ◽  
pp. 287-298
Author(s):  
Ruixiu Sui ◽  
Jonnie Baggard

HighlightsWe developed and evaluated a variable-rate irrigation (VRI) management method for five crop years in the Mississippi Delta.VRI management significantly reduced irrigation water use in comparison with uniform-rate irrigation (URI). There was no significant difference in grain yield and irrigation water productivity between VRI and URI management.Soil apparent electrical conductivity (ECa) was used to delineate irrigation management zones and generate VRI prescriptions.Sensor-measured soil water content was used in irrigation scheduling.Abstract. Variable-rate irrigation (VRI) allows producers to site-specifically apply irrigation water at variable rates within a field to account for the temporal and spatial variability in soil and plant characteristics. Developing practical VRI methods and documenting the benefits of VRI application are critical to accelerate the adoption of VRI technologies. Using apparent soil electrical conductivity (ECa) and soil moisture sensors, a VRI method was developed and evaluated with corn and soybean for five crop years in the Mississippi Delta. Soil ECa of the study fields was mapped and used to delineate VRI management zones and create VRI prescriptions. Irrigation was scheduled using soil volumetric water content measured by soil moisture sensors. A center pivot VRI system was employed to deliver irrigation water according to the VRI prescription. Grain yield, irrigation water use, and irrigation water productivity in the VRI treatment were determined and compared with that in a uniform-rate irrigation (URI) treatment. Results showed that the grain yield and irrigation water productivity between the VRI and URI treatments were not statistically different with both corn and soybean crops. The VRI management significantly reduced the amount of irrigation water by 22% in corn and by 11% in soybean (p = 0.05). Adoption of VRI management could improve irrigation water use efficiency in the Mississippi Delta. Keywords: Soil electrical conductivity, Soil moisture sensor, Variable rate irrigation, Water management.


2006 ◽  
Vol 10 (6) ◽  
pp. 829-847 ◽  
Author(s):  
S. Giertz ◽  
B. Diekkrüger ◽  
G. Steup

Abstract. The aim of the study was to test the applicability of a physically-based model to simulate the hydrological processes in a headwater catchment in Benin. Field investigations in the catchment have shown that lateral processes such as surface runoff and interflow are most important. Therefore, the 1-D SVAT-model SIMULAT was modified to a semi-distributed hillslope version (SIMULAT-H). Based on a good database, the model was evaluated in a multi-criteria validation using discharge, discharge components and soil moisture data. For the validation of discharge, good results were achieved for dry and wet years. The main differences were observable in the beginning of the rainy season. A comparison of the discharge components determined by hydro-chemical measurements with the simulation revealed that the model simulated the ratio of groundwater fluxes and fast runoff components correctly. For the validation of the discharge components of single events, larger differences were observable, which was partly caused by uncertainties in the precipitation data. The representation of the soil moisture dynamics by the model was good for the top soil layer. For deeper soil horizons, which are characterized by higher gravel content, the differences between simulated and measured soil moisture were larger. A good agreement of simulation results and field investigations was achieved for the runoff generation processes. Interflow is the predominant process on the upper and the middle slopes, while at the bottom of the hillslope groundwater recharge and – during the rainy season – saturated overland flow are important processes.


Irriga ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 1-15
Author(s):  
Iug Lopes ◽  
Abelardo A. A. Montenegro

SPACE DEPENDENCE OF SOIL MOISTURE AND SOIL ELECTRICAL CONDUCTIVITY IN ALUVIAL REGION1     IUG LOPES2 E ABELARDO ANTONIO DE ASSUNÇÃO MONTENEGRO3   1Paper extracted from the doctoral thesis of the first author. 2Department of Agronomy, Instituto Federal de Educação, Ciência e Tecnologia Baiano, BR 349, Km 14 - Zona Rural, CEP: 47600-000, Bom Jesus da Lapa - BA, Brazil; [email protected] - ORCID: 0000-0003-0592-4774. 3Department of Agricultural Engineering, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, Dois Irmão, CEP: 52171-900, Recife - PE, Brazil; [email protected] -ORCID: 0000-0002-5746-8574.     1 ABSTRACT   Spatial information on soil characteristics is essential to proper decision-making regarding to the environment and land use management. The objective of this work was the investigation of cross - variance between soil moisture and apparent soil electrical conductivity (CEa), under different land uses in an alluvial valley of Pernambuco. The study was developed at the Advanced Research Unit of Universidade Federal Rural de Pernambuco (UFRPE), located at  Brígida River Basin, municipality of Panamirim-PE. Soil samples were collected in a regular mesh of 20 x 10 m, for soil moisture by gravimetric method and, following a regular 10 x 10 m mesh, CEa measurements were performed using EM38® device. Cross-semivariograms were assessed and spatial dependence was verified by geostatistical procedures. It was verified in geostatistical procedures  low variation for soil moisture and intermediate variation for CEa. The use of geostatistics allowed identification of covariance between soil moisture and ECa, as well as spatial dependence for both variables, for agricultural areas. It was verified that soil moisture, even at levels close to residual, constitutes a relevant secondary component for increasing soil salinity maps precision, and hence to precision agriculture.   Keywords: geostatistics, semi-arid, precision agriculture     LOPES, I. E MONTENEGRO, A. A. DE A. DEPENDÊNCIA ESPACIAL DA UMIDADE DO SOLO E CONDUTIVIDADE ELÉTRICA EM REGIÃO ALUVIAL     2 RESUMO   Informações espaciais sobre as características do solo são essenciais para uma tomada de decisão adequada em relação ao meio ambiente e ao gerenciamento do uso do solo. O objetivo deste trabalho foi investigar a variância cruzada entre a umidade do solo e a condutividade elétrica aparente do solo (CEa), sob diferentes usos do solo em um vale aluvial de Pernambuco. O estudo foi desenvolvido na Unidade de Pesquisa Avançada da Universidade Federal Rural de Pernambuco (UFRPE), localizada na bacia do rio Brígida, município de Panamirim-PE. As amostras de solo foram coletadas em uma malha regular de 20 x 10 m, para a umidade do solo pelo método gravimétrico e, seguindo uma malha regular de 10 x 10 m, as medidas de CEa foram realizadas usando o dispositivo EM38®. Os semivariogramas cruzados foram avaliados e a dependência espacial foi verificada por procedimentos geoestatísticos. Verificou-se procedimentos geoestatísticos, uma baixa variação da umidade do solo e variação intermediária para CEa. O uso da geoestatística permitiu identificar a covariância entre a umidade do solo e o CEa, bem como a dependência espacial para ambas as variáveis, para as áreas agrícolas. Verificou-se que a umidade do solo, mesmo em níveis próximos ao residual, constitui um componente secundário relevante para o aumento da precisão do mapeamento da salinidade do solo e, consequentemente, para a agricultura de precisão.   Palavras-chave: geoestatística, semiárido, agricultura de precisão


2013 ◽  
pp. 183-186
Author(s):  
Géza Tuba

he effect of reduced and conventional tillage systems on soil compaction and moisture content in two years with extreme weather conditions is introduced in this paper. The investigations were carried out in a long-term soil cultivation experiment set on a heavy textured meadow chernozem soil at the Karcag Research Institute. In 2010 the amount of precipitation during the vegetation period of winter wheat was 623.3 mm, 2.2 times higher than the 50-year average, while in 2011 this value was 188.7 mm giving only 65% of the average. The examinations were made after harvest on stubbles on 4 test plots in 5 replications in the case of each tillage system. Soil compaction was characterised by penetration resistance values, while the actual soil moisture contents were determined by gravimetry. The values of penetration resistance and soil moisture content of the cultivated soil layer were better in the case of reduced tillage under extreme precipitation conditions. It could be established that regular application of deep soil loosening is essential due to the formation of the unfavourable compact soil layer under 30 cm. Conventional tillage resulted in enhanced compaction under the depth of ploughing, the penetration resistance can reach the value of 4 MPa under wet, while even 8 MPa under dry soil status.


2016 ◽  
Author(s):  
Shanshui Yuan ◽  
Steven M. Quiring

Abstract. This study provides a comprehensive evaluation of soil moisture simulations in the Coupled Model Intercomparison Project Phase 5 (CMIP5) extended historical experiment (2003 to 2012). Soil moisture from in situ and satellite sources are used to evaluate CMIP5 simulations in the contiguous United States (CONUS). Both near-surface (0–10 cm) and soil column (0–100 cm) simulations from more than 14 CMIP5 models are evaluated during the warm season (April–September). Multi-model ensemble means and the performance of individual models are assessed at a monthly time scale. Our results indicate that CMIP5 models can reproduce the seasonal variability in soil moisture over CONUS. However, the models tend to overestimate the magnitude of both near-surface and soil-column soil moisture in the western U.S. and underestimate it in the eastern U.S. There are large variations in model performance, especially in the near-surface. There are significant regional and inter-model variations in performance. Results of a regional analysis show that in deeper soil layer, the CMIP5 soil moisture simulations tend to be most skillful in the southern U.S. Based on both the satellite-derived and in situ soil moisture, CESM1, CCSM4 and GFDL-ESM2M perform best in the 0–10 cm soil layer and CESM1, CCSM4, GFDL-ESM2M and HadGEM2-ES perform best in the 0–100 cm soil layer.


Sign in / Sign up

Export Citation Format

Share Document