Solubility of ZrO2 in Cryolite-Based Molten Salt System

2014 ◽  
Vol 968 ◽  
pp. 67-71 ◽  
Author(s):  
Morigen Gaowa Bao ◽  
Zhao Wen Wang ◽  
Bing Liang Gao ◽  
Zhong Ning Shi ◽  
Xian Wei Hu ◽  
...  

Electrolysis of cryolite-based molten salt is an important method for Al-Zr alloy production. The dissolution of ZrO2 in the melts effects current efficiency and energy consumption of the production process of Al-Zr alloy, so it is most importance to study the solubility of ZrO2 in the melts. In this paper, the solubility of ZrO2 in the cryolite-based molten salt of different composition at different temperatures was measured by isothermal saturation method. It was found that ZrO2 content increased rapidly in the initial stage, but the increase rate was very slow after two hours, so it was thought that ZrO2 was nearly saturation after two hour-after dissolution. The solubility of ZrO2 in cryolite-based molten salt increased markedly when increased the temperature and addition of CaF2. The solubility of ZrO2 in 2.2NaF·AlF3-Al2O3-CaF2 molten salt is similar with solubility of ZrO2 in the 2.2NaF·AlF3-CaF2, it is reach 5.5wt%.

2014 ◽  
Vol 908 ◽  
pp. 167-170 ◽  
Author(s):  
Jie Li ◽  
Yang Pei ◽  
Yun Gang Li

The solubility of WO3 in NaCl-KCl-NaF-WO3 molten salt system was measured by isothermal saturation method. The results show that in the molten salt system when the temperature rise to 700 °C the saturation time of the WO3 dissolution time is 6 hours. When the temperature rise to 730 °C from 700 °C the saturation time of the WO3 dissolution time needs 80 minutes. As shown in the XRD pattern, there are NaCl, KCl, NaF, WO3, Na5W3O9F5, Na3WO3F3 and NaWO3F in the molten salt.


2014 ◽  
Vol 908 ◽  
pp. 171-174
Author(s):  
Jie Li ◽  
Yang Pei ◽  
Yun Gang Li

The solubility of WO3 in NaCl-KCl-NaF-WO3 molten salt system was measured by isothermal saturation method. The results show that in the molten salt system the solubility of WO3 increased with the increase of temperature from 700 °C to 820 °C, and the relationship between solubility and temperature is approximately linear. As shown in the XRD pattern, there are NaCl, KCl, NaF, WO3, Na5W3O9F5, Na3WO3F3 and NaWO3F in the molten salt, so the dissolution of WO3 is the result of both physical dissolution and chemical dissolution.


Author(s):  
Xuehua Wang ◽  
Liwen Zhang ◽  
Xiaoli Xi ◽  
Zuoren Nie

Abstract Tungsten was extracted from LiCl-KCl-Li2WO4 molten salt with tungsten carbide as soluble anode, and its electrochemical dissolution was studied. Although the fused salt electrochemical method has the advantages of short process and easy operation of the equipment, there are some problems in the current electrolysis process, such as higher electrolysis temperature, high energy consumption and complex composition of the products, in order to reduce the electrolysis temperature and energy consumption, tungsten was extracted by LiCl-KCl-Li2WO4 molten salt system at 400-600°C. In addition, compared with the blank salt electrolysis, the addition of Li2WO4 as the active material makes the reaction more likely to occur, and improves the dissolution efficiency and the current efficiency. Through a series of electrochemical tests, it is proved that adding Li2WO4 decreases the charge transfer resistance, speeds up the reaction and studies the oxidation-reduction process of tungsten ion in tungstate, it is proved that the redox process is a reversible process controlled by diffusion. Clusters of spherical tungsten powders were prepared at 500℃ by changing the experimental parameters to obtain the optimal conditions.


2021 ◽  
Vol 1026 ◽  
pp. 39-48
Author(s):  
Han Bing He ◽  
Yu Si Wang ◽  
Ze Xiang Luo ◽  
Jing Zeng

The effect of different additives Ni, Fe, Cu on the structure and properties of electrolyte system 78% Na3AlF6- -9.5%AlF3-5.0%CaF2-7.5%Al2O3 at 1200K and 1.01Mpa was studied by molecular dynamics method. The radial distribution function, coordination number, diffusion coefficient, conductivity, and viscosity of the system were discussed in detail. The results demonstrated that the order of the self-diffusion coefficient of ions in the electrolyte system is: Na+ > F- > O2- > Ca2+ >Al3+. The addition of Ni and Fe connected the free aluminum composite ion groups in the system through fluorine bridges, which enhanced the interaction between Al3+ and Al3+. The addition of Cu weakened the interaction between Al3 + and Al3+ and the F-. The interaction between Al3+ and Na+, [AlF7]4- ionic groups might appeared in the melt system. After adding NiO, Fe2O3, and Cu, the electrical conductivity of the system increased, and the viscosity decreased. The research work revealed the influence of Ni, Fe, Cu on the ion existence form, mobility, inter-ion interaction and diffusion mechanism of cryolite molten salt system, which has important guiding significance for aluminum electrolysis production.


2019 ◽  
Vol 730 ◽  
pp. 587-593 ◽  
Author(s):  
Hui Guo ◽  
Jie Li ◽  
Hongliang Zhang ◽  
Tianshuang Li ◽  
Jiawei Luo ◽  
...  

2020 ◽  
Vol 4 (2) ◽  
pp. 15-18
Author(s):  
Tatiany Carvalho dos Santos ◽  
Richard Stephen Gates ◽  
Ilda De Fátima Ferreira Tinôco ◽  
Sérgio Zolnier ◽  
Letícia Cibele da Silva Ramos Freitas

The objective of this study was to evaluate the effect of different air velocities and temperature at the feeder on mean surface temperature of Japanese quail during the initial stage of laying. The experiment was carried out at the Center for Research in Environment and Agroindustry Systems Engineering (AMBIAGRO), Department of Agricultural Engineering, Federal University of Viçosa, Viçosa/MG, Brazil. A total of 216 Japanese quail in the initial laying phase were placed in four environmental chambers with different temperatures and air velocity, where they were housed and distributed randomly in 2 galvanized wire cages, with 3 partitions each and 27 birds/cage, and a density of approximately 155.6 cm²/bird. The experimental design consisted of randomized blocks with replications of two treatments (air velocity at the feeder: 0, 1, 2, and 3 m/s and air temperature: 17, 23, 29 and 35°C). The mean surface temperature was analyzed by Two-Way ANOVA, with treatment means separated by the Tukey test (P < 0.05). There was a significant positive correlation between air temperature and mean surface temperature (MST). Air velocity is important in removing heat from the surface of birds.


2014 ◽  
Vol 908 ◽  
pp. 159-162
Author(s):  
Jie Li ◽  
Yang Pei ◽  
Ya Bin Liu ◽  
Yun Gang Li

The liquidus temperature of molten salt NaCl-KCl-Na3WO3F3 system was measured by differential thermal analysis. The results show that in the molten salt system when XNaCl:XKCl=1:1, XNa3WO3F3<0.6 the liquidus temperature decreased with increase of Na3WO3F3 content; when XNaCl:XKCl=1:1, XNa3WO3F3> 0.6 the liquidus temperature increased with the increase of Na3WO3F3 content; the eutectic temperature is 612.9 °C, the eutectic composition is XNaCl=0.2, XKCl=0.2, XNa3WO3F3=0.6.


2021 ◽  
Vol 1035 ◽  
pp. 278-285
Author(s):  
Lei Chen Jia ◽  
Jian Min Yu ◽  
Guo Qin Wu ◽  
Wen Long Xu ◽  
Yong Gang Tian ◽  
...  

The compression behavior and mechanical properties of the Mg-13Gd-4Y-2Zn-0.5Zr (wt.%) alloy filled with intragranular long-period stacking ordered (LPSO) phases at different temperatures were investigated. The results showed that the higher the compression temperature, the smaller the plastic strain that the grains withstand. The grains changed from equiaxed to flat strips when compressed at 350°C, and the morphology of the grains did not change at 450°C. Due to the existence of DRX grains, compression at 450 °C didn’t cause large-angle kink, but the kink angle at 350°C was very large. DRX grains only appeared at the grain boundaries and around the intergranular LPSO phase at the beginning of compression, and only appear at the kink bands (KBs) after the lamellar LPSO phases begin to kink. DRX grains gradually increased with the KBs increasing.


Sign in / Sign up

Export Citation Format

Share Document